Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996571841> ?p ?o ?g. }
- W2996571841 abstract "For fully nonlinear $k$-Hessian operators on bounded strictly $(k-1)$-convex domains $Omega$ in ${mathbb R}^N$, a characterization of the principal eigenvalue associated to a $k$-convex and negative principal eigenfunction will be given as the supremum over values of a spectral parameter for which admissible viscosity supersolutions obey a minimum principle. The admissibility condition is phrased in terms of the natural closed convex cone $Sigma_k$ in the space of symmetric N by N matrices, which is an elliptic set in the sense of Krylov [Trans. AMS, 1995] and which corresponds to using $k$-convex functions as admissibility constraints in the formulation of viscosity subsolutions and supersolutions. Moreover, the associated principal eigenfunction is constructed by an iterative viscosity solution technique, which exploits a compactness property which results from the establishment of a global H{o}lder estimate for the unique $k$-convex solutions of the approximating equations." @default.
- W2996571841 created "2019-12-26" @default.
- W2996571841 creator A5064788920 @default.
- W2996571841 creator A5075986688 @default.
- W2996571841 date "2019-12-19" @default.
- W2996571841 modified "2023-09-27" @default.
- W2996571841 title "Principal eigenvalues for k-Hessian operators by maximum principle methods." @default.
- W2996571841 cites W1615295546 @default.
- W2996571841 cites W1866311589 @default.
- W2996571841 cites W1905162850 @default.
- W2996571841 cites W1965827855 @default.
- W2996571841 cites W1970195958 @default.
- W2996571841 cites W2000349527 @default.
- W2996571841 cites W2008381371 @default.
- W2996571841 cites W2014601829 @default.
- W2996571841 cites W2032316144 @default.
- W2996571841 cites W2041714615 @default.
- W2996571841 cites W2048888061 @default.
- W2996571841 cites W2064337207 @default.
- W2996571841 cites W2082434794 @default.
- W2996571841 cites W2084587134 @default.
- W2996571841 cites W2085902286 @default.
- W2996571841 cites W2089385801 @default.
- W2996571841 cites W2100203406 @default.
- W2996571841 cites W2111145614 @default.
- W2996571841 cites W2134965385 @default.
- W2996571841 cites W2158947503 @default.
- W2996571841 cites W2172022937 @default.
- W2996571841 cites W2243891214 @default.
- W2996571841 cites W2317283549 @default.
- W2996571841 cites W2581545684 @default.
- W2996571841 cites W2593587456 @default.
- W2996571841 cites W2962785805 @default.
- W2996571841 cites W2963041216 @default.
- W2996571841 cites W3037688002 @default.
- W2996571841 cites W65069208 @default.
- W2996571841 cites W96571792 @default.
- W2996571841 cites W2475219109 @default.
- W2996571841 hasPublicationYear "2019" @default.
- W2996571841 type Work @default.
- W2996571841 sameAs 2996571841 @default.
- W2996571841 citedByCount "0" @default.
- W2996571841 crossrefType "posted-content" @default.
- W2996571841 hasAuthorship W2996571841A5064788920 @default.
- W2996571841 hasAuthorship W2996571841A5075986688 @default.
- W2996571841 hasConcept C112680207 @default.
- W2996571841 hasConcept C121332964 @default.
- W2996571841 hasConcept C128803854 @default.
- W2996571841 hasConcept C134306372 @default.
- W2996571841 hasConcept C156778621 @default.
- W2996571841 hasConcept C157972887 @default.
- W2996571841 hasConcept C158693339 @default.
- W2996571841 hasConcept C18648836 @default.
- W2996571841 hasConcept C202444582 @default.
- W2996571841 hasConcept C203616005 @default.
- W2996571841 hasConcept C2524010 @default.
- W2996571841 hasConcept C28340159 @default.
- W2996571841 hasConcept C28826006 @default.
- W2996571841 hasConcept C33923547 @default.
- W2996571841 hasConcept C34388435 @default.
- W2996571841 hasConcept C49870271 @default.
- W2996571841 hasConcept C62520636 @default.
- W2996571841 hasConcept C70610323 @default.
- W2996571841 hasConcept C88731125 @default.
- W2996571841 hasConceptScore W2996571841C112680207 @default.
- W2996571841 hasConceptScore W2996571841C121332964 @default.
- W2996571841 hasConceptScore W2996571841C128803854 @default.
- W2996571841 hasConceptScore W2996571841C134306372 @default.
- W2996571841 hasConceptScore W2996571841C156778621 @default.
- W2996571841 hasConceptScore W2996571841C157972887 @default.
- W2996571841 hasConceptScore W2996571841C158693339 @default.
- W2996571841 hasConceptScore W2996571841C18648836 @default.
- W2996571841 hasConceptScore W2996571841C202444582 @default.
- W2996571841 hasConceptScore W2996571841C203616005 @default.
- W2996571841 hasConceptScore W2996571841C2524010 @default.
- W2996571841 hasConceptScore W2996571841C28340159 @default.
- W2996571841 hasConceptScore W2996571841C28826006 @default.
- W2996571841 hasConceptScore W2996571841C33923547 @default.
- W2996571841 hasConceptScore W2996571841C34388435 @default.
- W2996571841 hasConceptScore W2996571841C49870271 @default.
- W2996571841 hasConceptScore W2996571841C62520636 @default.
- W2996571841 hasConceptScore W2996571841C70610323 @default.
- W2996571841 hasConceptScore W2996571841C88731125 @default.
- W2996571841 hasLocation W29965718411 @default.
- W2996571841 hasOpenAccess W2996571841 @default.
- W2996571841 hasPrimaryLocation W29965718411 @default.
- W2996571841 hasRelatedWork W1964072432 @default.
- W2996571841 hasRelatedWork W1998136711 @default.
- W2996571841 hasRelatedWork W2013251026 @default.
- W2996571841 hasRelatedWork W2034008155 @default.
- W2996571841 hasRelatedWork W2041902840 @default.
- W2996571841 hasRelatedWork W2081347203 @default.
- W2996571841 hasRelatedWork W2087602617 @default.
- W2996571841 hasRelatedWork W2095158466 @default.
- W2996571841 hasRelatedWork W2241718860 @default.
- W2996571841 hasRelatedWork W2279995217 @default.
- W2996571841 hasRelatedWork W2538794260 @default.
- W2996571841 hasRelatedWork W2892114891 @default.
- W2996571841 hasRelatedWork W2902471570 @default.
- W2996571841 hasRelatedWork W2950112541 @default.