Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996609870> ?p ?o ?g. }
- W2996609870 endingPage "1940009" @default.
- W2996609870 startingPage "1940009" @default.
- W2996609870 abstract "AlphaGo and its successors AlphaGo Zero and AlphaZero made international headlines with their incredible successes in game playing, which have been touted as further evidence of the immense potential of artificial intelligence, and in particular, machine learning. AlphaGo defeated the reigning human world champion Go player Lee Sedol 4 games to 1, in March 2016 in Seoul, Korea, an achievement that surpassed previous computer game-playing program milestones by IBM’s Deep Blue in chess and by IBM’s Watson in the U.S. TV game show Jeopardy. AlphaGo then followed this up by defeating the world’s number one Go player Ke Jie 3-0 at the Future of Go Summit in Wuzhen, China in May 2017. Then, in December 2017, AlphaZero stunned the chess world by dominating the top computer chess program Stockfish (which has a far higher rating than any human) in a 100-game match by winning 28 games and losing none (72 draws) after training from scratch for just four hours! The deep neural networks of AlphaGo, AlphaZero, and all their incarnations are trained using a technique called Monte Carlo tree search (MCTS), whose roots can be traced back to an adaptive multistage sampling (AMS) simulation-based algorithm for Markov decision processes (MDPs) published in Operations Research back in 2005 [Chang, HS, MC Fu, J Hu and SI Marcus (2005). An adaptive sampling algorithm for solving Markov decision processes. Operations Research, 53, 126–139.] (and introduced even earlier in 2002). After reviewing the history and background of AlphaGo through AlphaZero, the origins of MCTS are traced back to simulation-based algorithms for MDPs, and its role in training the neural networks that essentially carry out the value/policy function approximation used in approximate dynamic programming, reinforcement learning, and neuro-dynamic programming is discussed, including some recently proposed enhancements building on statistical ranking & selection research in the operations research simulation community." @default.
- W2996609870 created "2019-12-26" @default.
- W2996609870 creator A5000889975 @default.
- W2996609870 date "2019-12-01" @default.
- W2996609870 modified "2023-09-25" @default.
- W2996609870 title "Simulation-Based Algorithms for Markov Decision Processes: Monte Carlo Tree Search from AlphaGo to AlphaZero" @default.
- W2996609870 cites W1536615069 @default.
- W2996609870 cites W1625390266 @default.
- W2996609870 cites W2000080679 @default.
- W2996609870 cites W2009551863 @default.
- W2996609870 cites W2016647253 @default.
- W2996609870 cites W2100857832 @default.
- W2996609870 cites W2122272911 @default.
- W2996609870 cites W2126316555 @default.
- W2996609870 cites W2168405694 @default.
- W2996609870 cites W2257979135 @default.
- W2996609870 cites W2295012269 @default.
- W2996609870 cites W2505159842 @default.
- W2996609870 cites W2541018735 @default.
- W2996609870 cites W2574978968 @default.
- W2996609870 cites W2762403641 @default.
- W2996609870 cites W2766447205 @default.
- W2996609870 cites W2773381986 @default.
- W2996609870 cites W2787259794 @default.
- W2996609870 cites W2902907165 @default.
- W2996609870 cites W2960876848 @default.
- W2996609870 cites W2963653944 @default.
- W2996609870 cites W4237029372 @default.
- W2996609870 cites W4247855592 @default.
- W2996609870 cites W4252019227 @default.
- W2996609870 cites W4302608015 @default.
- W2996609870 cites W4362203700 @default.
- W2996609870 doi "https://doi.org/10.1142/s0217595919400098" @default.
- W2996609870 hasPublicationYear "2019" @default.
- W2996609870 type Work @default.
- W2996609870 sameAs 2996609870 @default.
- W2996609870 citedByCount "9" @default.
- W2996609870 countsByYear W29966098702020 @default.
- W2996609870 countsByYear W29966098702021 @default.
- W2996609870 countsByYear W29966098702022 @default.
- W2996609870 countsByYear W29966098702023 @default.
- W2996609870 crossrefType "journal-article" @default.
- W2996609870 hasAuthorship W2996609870A5000889975 @default.
- W2996609870 hasConcept C105795698 @default.
- W2996609870 hasConcept C107673813 @default.
- W2996609870 hasConcept C111350023 @default.
- W2996609870 hasConcept C11413529 @default.
- W2996609870 hasConcept C119857082 @default.
- W2996609870 hasConcept C127413603 @default.
- W2996609870 hasConcept C144237770 @default.
- W2996609870 hasConcept C154945302 @default.
- W2996609870 hasConcept C171250308 @default.
- W2996609870 hasConcept C177142836 @default.
- W2996609870 hasConcept C17744445 @default.
- W2996609870 hasConcept C192562407 @default.
- W2996609870 hasConcept C19499675 @default.
- W2996609870 hasConcept C199539241 @default.
- W2996609870 hasConcept C2780465443 @default.
- W2996609870 hasConcept C33923547 @default.
- W2996609870 hasConcept C41008148 @default.
- W2996609870 hasConcept C42475967 @default.
- W2996609870 hasConcept C46149586 @default.
- W2996609870 hasConcept C70388272 @default.
- W2996609870 hasConcept C73795354 @default.
- W2996609870 hasConcept C95815963 @default.
- W2996609870 hasConceptScore W2996609870C105795698 @default.
- W2996609870 hasConceptScore W2996609870C107673813 @default.
- W2996609870 hasConceptScore W2996609870C111350023 @default.
- W2996609870 hasConceptScore W2996609870C11413529 @default.
- W2996609870 hasConceptScore W2996609870C119857082 @default.
- W2996609870 hasConceptScore W2996609870C127413603 @default.
- W2996609870 hasConceptScore W2996609870C144237770 @default.
- W2996609870 hasConceptScore W2996609870C154945302 @default.
- W2996609870 hasConceptScore W2996609870C171250308 @default.
- W2996609870 hasConceptScore W2996609870C177142836 @default.
- W2996609870 hasConceptScore W2996609870C17744445 @default.
- W2996609870 hasConceptScore W2996609870C192562407 @default.
- W2996609870 hasConceptScore W2996609870C19499675 @default.
- W2996609870 hasConceptScore W2996609870C199539241 @default.
- W2996609870 hasConceptScore W2996609870C2780465443 @default.
- W2996609870 hasConceptScore W2996609870C33923547 @default.
- W2996609870 hasConceptScore W2996609870C41008148 @default.
- W2996609870 hasConceptScore W2996609870C42475967 @default.
- W2996609870 hasConceptScore W2996609870C46149586 @default.
- W2996609870 hasConceptScore W2996609870C70388272 @default.
- W2996609870 hasConceptScore W2996609870C73795354 @default.
- W2996609870 hasConceptScore W2996609870C95815963 @default.
- W2996609870 hasFunder F4320306076 @default.
- W2996609870 hasIssue "06" @default.
- W2996609870 hasLocation W29966098701 @default.
- W2996609870 hasOpenAccess W2996609870 @default.
- W2996609870 hasPrimaryLocation W29966098701 @default.
- W2996609870 hasRelatedWork W2029140942 @default.
- W2996609870 hasRelatedWork W2152117070 @default.
- W2996609870 hasRelatedWork W2257979135 @default.
- W2996609870 hasRelatedWork W2523674799 @default.
- W2996609870 hasRelatedWork W2808378895 @default.
- W2996609870 hasRelatedWork W2914801258 @default.