Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996621484> ?p ?o ?g. }
- W2996621484 endingPage "119874" @default.
- W2996621484 startingPage "119874" @default.
- W2996621484 abstract "Abstract Rapid urbanization and industrialization has worsened the situation of the scarce cultivated land resources of China. It's therefore of great importance for sustainable development based on the systematic evaluation on cultivated land use efficiency (CLUE). This study took carbon emissions resulting from cultivated land use into the measurement framework of CLUE, and a slack-based measure (SBM) model with undesirable outputs, boxplot, kernel density estimation and Tobit regression model are adopted for the analysis of 31 provinces in China from 2000 to 2017. The results showed that there was an increasing trend in CLUE in China from 0.5236 in 2000 to 0.8501 in 2017, with the growth rate of 38.40%. Most of provinces in China have much lower levels of CLUE with significantly spatial disparities. In particular, Hainan, Chongqing, Sichuan and Guizhou are always most efficient with the highest value of 1. At the regional level, the average value of CLUE in the northeastern region is the highest, followed by the western, eastern and central regions, and the CLUE in the eastern region is more unstable than the other three regions. The results of Tobit regression show that natural conditions, cultivated land resource endowments, agricultural production conditions, regional economic development and regional science and technology development are important factors resulting in the disparity of China's CLUE." @default.
- W2996621484 created "2019-12-26" @default.
- W2996621484 creator A5014316551 @default.
- W2996621484 creator A5020013322 @default.
- W2996621484 creator A5020678764 @default.
- W2996621484 creator A5026386743 @default.
- W2996621484 date "2020-02-01" @default.
- W2996621484 modified "2023-10-17" @default.
- W2996621484 title "Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered" @default.
- W2996621484 cites W1594321676 @default.
- W2996621484 cites W1645208848 @default.
- W2996621484 cites W1649039142 @default.
- W2996621484 cites W1967032686 @default.
- W2996621484 cites W1972733734 @default.
- W2996621484 cites W1973796626 @default.
- W2996621484 cites W1974521950 @default.
- W2996621484 cites W1996676414 @default.
- W2996621484 cites W2004821509 @default.
- W2996621484 cites W2007077771 @default.
- W2996621484 cites W2013415315 @default.
- W2996621484 cites W2017095600 @default.
- W2996621484 cites W2022186362 @default.
- W2996621484 cites W2032445183 @default.
- W2996621484 cites W2033706609 @default.
- W2996621484 cites W2038013080 @default.
- W2996621484 cites W2039664503 @default.
- W2996621484 cites W2043244602 @default.
- W2996621484 cites W2049874288 @default.
- W2996621484 cites W2052256608 @default.
- W2996621484 cites W2059078303 @default.
- W2996621484 cites W2076452041 @default.
- W2996621484 cites W2077689216 @default.
- W2996621484 cites W2084660657 @default.
- W2996621484 cites W2085340808 @default.
- W2996621484 cites W2095180636 @default.
- W2996621484 cites W2102236934 @default.
- W2996621484 cites W2142885361 @default.
- W2996621484 cites W2146940549 @default.
- W2996621484 cites W2160425632 @default.
- W2996621484 cites W2293742312 @default.
- W2996621484 cites W2475689265 @default.
- W2996621484 cites W2506753585 @default.
- W2996621484 cites W2553411668 @default.
- W2996621484 cites W2574817206 @default.
- W2996621484 cites W2579858450 @default.
- W2996621484 cites W2590491435 @default.
- W2996621484 cites W2616662949 @default.
- W2996621484 cites W2619426790 @default.
- W2996621484 cites W2620788264 @default.
- W2996621484 cites W2738822506 @default.
- W2996621484 cites W2742348021 @default.
- W2996621484 cites W2742854735 @default.
- W2996621484 cites W2752757036 @default.
- W2996621484 cites W2772976732 @default.
- W2996621484 cites W2775379175 @default.
- W2996621484 cites W2788570509 @default.
- W2996621484 cites W2796438630 @default.
- W2996621484 cites W2805947728 @default.
- W2996621484 cites W2807365305 @default.
- W2996621484 cites W2887728095 @default.
- W2996621484 cites W2901446284 @default.
- W2996621484 cites W2912385725 @default.
- W2996621484 cites W2920453046 @default.
- W2996621484 cites W4239688186 @default.
- W2996621484 doi "https://doi.org/10.1016/j.techfore.2019.119874" @default.
- W2996621484 hasPublicationYear "2020" @default.
- W2996621484 type Work @default.
- W2996621484 sameAs 2996621484 @default.
- W2996621484 citedByCount "145" @default.
- W2996621484 countsByYear W29966214842020 @default.
- W2996621484 countsByYear W29966214842021 @default.
- W2996621484 countsByYear W29966214842022 @default.
- W2996621484 countsByYear W29966214842023 @default.
- W2996621484 crossrefType "journal-article" @default.
- W2996621484 hasAuthorship W2996621484A5014316551 @default.
- W2996621484 hasAuthorship W2996621484A5020013322 @default.
- W2996621484 hasAuthorship W2996621484A5020678764 @default.
- W2996621484 hasAuthorship W2996621484A5026386743 @default.
- W2996621484 hasConcept C104779481 @default.
- W2996621484 hasConcept C105795698 @default.
- W2996621484 hasConcept C11413529 @default.
- W2996621484 hasConcept C120936955 @default.
- W2996621484 hasConcept C140205800 @default.
- W2996621484 hasConcept C144133560 @default.
- W2996621484 hasConcept C162324750 @default.
- W2996621484 hasConcept C166957645 @default.
- W2996621484 hasConcept C175605778 @default.
- W2996621484 hasConcept C18903297 @default.
- W2996621484 hasConcept C191935318 @default.
- W2996621484 hasConcept C205649164 @default.
- W2996621484 hasConcept C2988907029 @default.
- W2996621484 hasConcept C33923547 @default.
- W2996621484 hasConcept C39432304 @default.
- W2996621484 hasConcept C47737302 @default.
- W2996621484 hasConcept C4792198 @default.
- W2996621484 hasConcept C86803240 @default.
- W2996621484 hasConceptScore W2996621484C104779481 @default.
- W2996621484 hasConceptScore W2996621484C105795698 @default.