Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996627455> ?p ?o ?g. }
- W2996627455 endingPage "e15028" @default.
- W2996627455 startingPage "e15028" @default.
- W2996627455 abstract "Bipolar disorder is a prevalent mental health condition that is imposing significant burden on society. Accurate forecasting of symptom scores can be used to improve disease monitoring, enable early intervention, and eventually help prevent costly hospitalizations. Although several studies have examined the use of smartphone data to detect mood, only few studies deal with forecasting mood for one or more days.This study aimed to examine the feasibility of forecasting daily subjective mood scores based on daily self-assessments collected from patients with bipolar disorder via a smartphone-based system in a randomized clinical trial.We applied hierarchical Bayesian regression models, a multi-task learning method, to account for individual differences and forecast mood for up to seven days based on 15,975 smartphone self-assessments from 84 patients with bipolar disorder participating in a randomized clinical trial. We reported the results of two time-series cross-validation 1-day forecast experiments corresponding to two different real-world scenarios and compared the outcomes with commonly used baseline methods. We then applied the best model to evaluate a 7-day forecast.The best performing model used a history of 4 days of self-assessment to predict future mood scores with historical mood being the most important predictor variable. The proposed hierarchical Bayesian regression model outperformed pooled and separate models in a 1-day forecast time-series cross-validation experiment and achieved the predicted metrics, R2=0.51 and root mean squared error of 0.32, for mood scores on a scale of -3 to 3. When increasing the forecast horizon, forecast errors also increased and the forecast regressed toward the mean of data distribution.Our proposed method can forecast mood for several days with low error compared with common baseline methods. The applicability of a mood forecast in the clinical treatment of bipolar disorder has also been discussed." @default.
- W2996627455 created "2019-12-26" @default.
- W2996627455 creator A5012093928 @default.
- W2996627455 creator A5018024652 @default.
- W2996627455 creator A5021753213 @default.
- W2996627455 creator A5043844478 @default.
- W2996627455 creator A5074715169 @default.
- W2996627455 creator A5082357240 @default.
- W2996627455 date "2020-04-01" @default.
- W2996627455 modified "2023-09-26" @default.
- W2996627455 title "Forecasting Mood in Bipolar Disorder From Smartphone Self-assessments: Hierarchical Bayesian Approach" @default.
- W2996627455 cites W1547333707 @default.
- W2996627455 cites W1894490285 @default.
- W2996627455 cites W1993516520 @default.
- W2996627455 cites W2005069458 @default.
- W2996627455 cites W2013766552 @default.
- W2996627455 cites W2061378977 @default.
- W2996627455 cites W2065340646 @default.
- W2996627455 cites W2065864529 @default.
- W2996627455 cites W2066806488 @default.
- W2996627455 cites W2078339310 @default.
- W2996627455 cites W2084865691 @default.
- W2996627455 cites W2088616391 @default.
- W2996627455 cites W2108344016 @default.
- W2996627455 cites W2108807738 @default.
- W2996627455 cites W2144673707 @default.
- W2996627455 cites W2150049965 @default.
- W2996627455 cites W2155002669 @default.
- W2996627455 cites W2155300577 @default.
- W2996627455 cites W2167659819 @default.
- W2996627455 cites W2171995598 @default.
- W2996627455 cites W2297827560 @default.
- W2996627455 cites W2312558038 @default.
- W2996627455 cites W2313961926 @default.
- W2996627455 cites W2560951263 @default.
- W2996627455 cites W2577537660 @default.
- W2996627455 cites W2605108175 @default.
- W2996627455 cites W2624900484 @default.
- W2996627455 cites W2779582454 @default.
- W2996627455 cites W2809351553 @default.
- W2996627455 cites W2899463730 @default.
- W2996627455 cites W2913340405 @default.
- W2996627455 cites W3102476541 @default.
- W2996627455 cites W4210597606 @default.
- W2996627455 cites W4248681815 @default.
- W2996627455 doi "https://doi.org/10.2196/15028" @default.
- W2996627455 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7367518" @default.
- W2996627455 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32234702" @default.
- W2996627455 hasPublicationYear "2020" @default.
- W2996627455 type Work @default.
- W2996627455 sameAs 2996627455 @default.
- W2996627455 citedByCount "25" @default.
- W2996627455 countsByYear W29966274552020 @default.
- W2996627455 countsByYear W29966274552021 @default.
- W2996627455 countsByYear W29966274552022 @default.
- W2996627455 countsByYear W29966274552023 @default.
- W2996627455 crossrefType "journal-article" @default.
- W2996627455 hasAuthorship W2996627455A5012093928 @default.
- W2996627455 hasAuthorship W2996627455A5018024652 @default.
- W2996627455 hasAuthorship W2996627455A5021753213 @default.
- W2996627455 hasAuthorship W2996627455A5043844478 @default.
- W2996627455 hasAuthorship W2996627455A5074715169 @default.
- W2996627455 hasAuthorship W2996627455A5082357240 @default.
- W2996627455 hasBestOaLocation W29966274551 @default.
- W2996627455 hasConcept C105795698 @default.
- W2996627455 hasConcept C119857082 @default.
- W2996627455 hasConcept C141071460 @default.
- W2996627455 hasConcept C152877465 @default.
- W2996627455 hasConcept C15744967 @default.
- W2996627455 hasConcept C168563851 @default.
- W2996627455 hasConcept C2776174506 @default.
- W2996627455 hasConcept C2780733359 @default.
- W2996627455 hasConcept C33923547 @default.
- W2996627455 hasConcept C41008148 @default.
- W2996627455 hasConcept C53059260 @default.
- W2996627455 hasConcept C70410870 @default.
- W2996627455 hasConcept C71924100 @default.
- W2996627455 hasConceptScore W2996627455C105795698 @default.
- W2996627455 hasConceptScore W2996627455C119857082 @default.
- W2996627455 hasConceptScore W2996627455C141071460 @default.
- W2996627455 hasConceptScore W2996627455C152877465 @default.
- W2996627455 hasConceptScore W2996627455C15744967 @default.
- W2996627455 hasConceptScore W2996627455C168563851 @default.
- W2996627455 hasConceptScore W2996627455C2776174506 @default.
- W2996627455 hasConceptScore W2996627455C2780733359 @default.
- W2996627455 hasConceptScore W2996627455C33923547 @default.
- W2996627455 hasConceptScore W2996627455C41008148 @default.
- W2996627455 hasConceptScore W2996627455C53059260 @default.
- W2996627455 hasConceptScore W2996627455C70410870 @default.
- W2996627455 hasConceptScore W2996627455C71924100 @default.
- W2996627455 hasIssue "4" @default.
- W2996627455 hasLocation W29966274551 @default.
- W2996627455 hasLocation W29966274552 @default.
- W2996627455 hasLocation W29966274553 @default.
- W2996627455 hasLocation W29966274554 @default.
- W2996627455 hasLocation W29966274555 @default.
- W2996627455 hasOpenAccess W2996627455 @default.
- W2996627455 hasPrimaryLocation W29966274551 @default.