Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996758417> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2996758417 abstract "Video classification is an important and active field of computer vision research due to its variety of applications (e.g. action recognition), ranging from intelligent surveillance to human-computer interaction. Recently, the rapid growth of camera devices and multimedia sharing platforms has created a tremendous amount of video data. Accordingly, there is the growing demand of the parallel and distributed video processing for dealing with the data-intensive and computing-intensive tasks of the recognition system. These tasks are widely recognized to be time-consuming when running over large-scale video data. In this paper, we propose a distributed framework built on the top of the emerging big data technology Spark which is well-designed for the in-memory parallel computing system. Particularly, based on the state-of-the-art bag of visual words model (BoV) for video classification, we provide a comprehensive study of key steps in BoV (i.e. feature extraction, codebook generation, and feature encoding), and propose their fast and distributed algorithms. In experiments, our results further demonstrate the efficiency of proposed algorithms as well as the scalability of our framework on a public dataset UCF101 by greatly speeding up the process of video classification." @default.
- W2996758417 created "2020-01-10" @default.
- W2996758417 creator A5039165136 @default.
- W2996758417 creator A5059877507 @default.
- W2996758417 creator A5065142942 @default.
- W2996758417 date "2019-12-01" @default.
- W2996758417 modified "2023-09-25" @default.
- W2996758417 title "Scalable Video Classification using Bag of Visual Words on Spark" @default.
- W2996758417 cites W1686810756 @default.
- W2996758417 cites W1944559940 @default.
- W2996758417 cites W1950136256 @default.
- W2996758417 cites W1966385142 @default.
- W2996758417 cites W1984309565 @default.
- W2996758417 cites W1987509311 @default.
- W2996758417 cites W2073459066 @default.
- W2996758417 cites W2105101328 @default.
- W2996758417 cites W2131846894 @default.
- W2996758417 cites W2131975293 @default.
- W2996758417 cites W2142194269 @default.
- W2996758417 cites W2156303437 @default.
- W2996758417 cites W2173213060 @default.
- W2996758417 cites W2185000319 @default.
- W2996758417 cites W2316303256 @default.
- W2996758417 cites W2343864402 @default.
- W2996758417 cites W2587382480 @default.
- W2996758417 cites W2766574284 @default.
- W2996758417 cites W2792119093 @default.
- W2996758417 cites W2797862701 @default.
- W2996758417 cites W2928793639 @default.
- W2996758417 cites W2963288913 @default.
- W2996758417 doi "https://doi.org/10.1109/dicta47822.2019.8945874" @default.
- W2996758417 hasPublicationYear "2019" @default.
- W2996758417 type Work @default.
- W2996758417 sameAs 2996758417 @default.
- W2996758417 citedByCount "0" @default.
- W2996758417 crossrefType "proceedings-article" @default.
- W2996758417 hasAuthorship W2996758417A5039165136 @default.
- W2996758417 hasAuthorship W2996758417A5059877507 @default.
- W2996758417 hasAuthorship W2996758417A5065142942 @default.
- W2996758417 hasConcept C119857082 @default.
- W2996758417 hasConcept C124101348 @default.
- W2996758417 hasConcept C127759330 @default.
- W2996758417 hasConcept C138885662 @default.
- W2996758417 hasConcept C154945302 @default.
- W2996758417 hasConcept C199360897 @default.
- W2996758417 hasConcept C26517878 @default.
- W2996758417 hasConcept C2776401178 @default.
- W2996758417 hasConcept C2781215313 @default.
- W2996758417 hasConcept C38652104 @default.
- W2996758417 hasConcept C41008148 @default.
- W2996758417 hasConcept C41895202 @default.
- W2996758417 hasConcept C48044578 @default.
- W2996758417 hasConcept C52622490 @default.
- W2996758417 hasConcept C65483669 @default.
- W2996758417 hasConcept C75684735 @default.
- W2996758417 hasConcept C77088390 @default.
- W2996758417 hasConceptScore W2996758417C119857082 @default.
- W2996758417 hasConceptScore W2996758417C124101348 @default.
- W2996758417 hasConceptScore W2996758417C127759330 @default.
- W2996758417 hasConceptScore W2996758417C138885662 @default.
- W2996758417 hasConceptScore W2996758417C154945302 @default.
- W2996758417 hasConceptScore W2996758417C199360897 @default.
- W2996758417 hasConceptScore W2996758417C26517878 @default.
- W2996758417 hasConceptScore W2996758417C2776401178 @default.
- W2996758417 hasConceptScore W2996758417C2781215313 @default.
- W2996758417 hasConceptScore W2996758417C38652104 @default.
- W2996758417 hasConceptScore W2996758417C41008148 @default.
- W2996758417 hasConceptScore W2996758417C41895202 @default.
- W2996758417 hasConceptScore W2996758417C48044578 @default.
- W2996758417 hasConceptScore W2996758417C52622490 @default.
- W2996758417 hasConceptScore W2996758417C65483669 @default.
- W2996758417 hasConceptScore W2996758417C75684735 @default.
- W2996758417 hasConceptScore W2996758417C77088390 @default.
- W2996758417 hasLocation W29967584171 @default.
- W2996758417 hasOpenAccess W2996758417 @default.
- W2996758417 hasPrimaryLocation W29967584171 @default.
- W2996758417 hasRelatedWork W13211703 @default.
- W2996758417 hasRelatedWork W1620941 @default.
- W2996758417 hasRelatedWork W2769812 @default.
- W2996758417 hasRelatedWork W3113622 @default.
- W2996758417 hasRelatedWork W3647669 @default.
- W2996758417 hasRelatedWork W4253129 @default.
- W2996758417 hasRelatedWork W4486015 @default.
- W2996758417 hasRelatedWork W6930659 @default.
- W2996758417 hasRelatedWork W8656678 @default.
- W2996758417 hasRelatedWork W9458969 @default.
- W2996758417 isParatext "false" @default.
- W2996758417 isRetracted "false" @default.
- W2996758417 magId "2996758417" @default.
- W2996758417 workType "article" @default.