Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996815539> ?p ?o ?g. }
- W2996815539 endingPage "037522" @default.
- W2996815539 startingPage "037522" @default.
- W2996815539 abstract "The use of sensors and the Internet of Things (IoT) is key to moving the world’s agriculture to a more productive and sustainable path. Recent advancements in IoT, Wireless Sensor Networks (WSN), and Information and Communication Technology (ICT) have the potential to address some of the environmental, economic, and technical challenges as well as opportunities in this sector. As the number of interconnected devices continues to grow, this generates more big data with multiple modalities and spatial and temporal variations. Intelligent processing and analysis of this big data are necessary to developing a higher level of knowledge base and insights that results in better decision making, forecasting, and reliable management of sensors. This paper is a comprehensive review of the application of different machine learning algorithms in sensor data analytics within the agricultural ecosystem. It further discusses a case study on an IoT based data-driven smart farm prototype as an integrated food, energy, and water (FEW) system." @default.
- W2996815539 created "2020-01-10" @default.
- W2996815539 creator A5000459226 @default.
- W2996815539 creator A5010427742 @default.
- W2996815539 creator A5028935352 @default.
- W2996815539 creator A5033247026 @default.
- W2996815539 creator A5058530987 @default.
- W2996815539 date "2019-12-19" @default.
- W2996815539 modified "2023-10-18" @default.
- W2996815539 title "Review—Machine Learning Techniques in Wireless Sensor Network Based Precision Agriculture" @default.
- W2996815539 cites W1975940050 @default.
- W2996815539 cites W2022641889 @default.
- W2996815539 cites W2068153485 @default.
- W2996815539 cites W2111619626 @default.
- W2996815539 cites W2200121095 @default.
- W2996815539 cites W2481822942 @default.
- W2996815539 cites W2498672755 @default.
- W2996815539 cites W2580808806 @default.
- W2996815539 cites W2587466508 @default.
- W2996815539 cites W2595046717 @default.
- W2996815539 cites W2603364874 @default.
- W2996815539 cites W2603417106 @default.
- W2996815539 cites W2604195691 @default.
- W2996815539 cites W2607934962 @default.
- W2996815539 cites W2741337071 @default.
- W2996815539 cites W2744036657 @default.
- W2996815539 cites W2751058821 @default.
- W2996815539 cites W2763337889 @default.
- W2996815539 cites W2767251609 @default.
- W2996815539 cites W2769621453 @default.
- W2996815539 cites W2770794632 @default.
- W2996815539 cites W2771058985 @default.
- W2996815539 cites W2774412401 @default.
- W2996815539 cites W2792263887 @default.
- W2996815539 cites W2793291913 @default.
- W2996815539 cites W2802501661 @default.
- W2996815539 cites W2805142011 @default.
- W2996815539 cites W2806576037 @default.
- W2996815539 cites W2885770726 @default.
- W2996815539 cites W2897688758 @default.
- W2996815539 cites W2899715818 @default.
- W2996815539 cites W2903091095 @default.
- W2996815539 cites W2904462474 @default.
- W2996815539 cites W2908611316 @default.
- W2996815539 cites W2911964244 @default.
- W2996815539 cites W2940449802 @default.
- W2996815539 cites W2946809859 @default.
- W2996815539 cites W2950944546 @default.
- W2996815539 cites W2965452713 @default.
- W2996815539 cites W2967678982 @default.
- W2996815539 cites W2969887765 @default.
- W2996815539 cites W2980015919 @default.
- W2996815539 cites W3099185017 @default.
- W2996815539 cites W3100857292 @default.
- W2996815539 cites W3100931193 @default.
- W2996815539 cites W4212883601 @default.
- W2996815539 cites W4231109964 @default.
- W2996815539 doi "https://doi.org/10.1149/2.0222003jes" @default.
- W2996815539 hasPublicationYear "2019" @default.
- W2996815539 type Work @default.
- W2996815539 sameAs 2996815539 @default.
- W2996815539 citedByCount "122" @default.
- W2996815539 countsByYear W29968155392020 @default.
- W2996815539 countsByYear W29968155392021 @default.
- W2996815539 countsByYear W29968155392022 @default.
- W2996815539 countsByYear W29968155392023 @default.
- W2996815539 crossrefType "journal-article" @default.
- W2996815539 hasAuthorship W2996815539A5000459226 @default.
- W2996815539 hasAuthorship W2996815539A5010427742 @default.
- W2996815539 hasAuthorship W2996815539A5028935352 @default.
- W2996815539 hasAuthorship W2996815539A5033247026 @default.
- W2996815539 hasAuthorship W2996815539A5058530987 @default.
- W2996815539 hasBestOaLocation W29968155391 @default.
- W2996815539 hasConcept C118518473 @default.
- W2996815539 hasConcept C120217122 @default.
- W2996815539 hasConcept C124101348 @default.
- W2996815539 hasConcept C149635348 @default.
- W2996815539 hasConcept C176563091 @default.
- W2996815539 hasConcept C18903297 @default.
- W2996815539 hasConcept C24590314 @default.
- W2996815539 hasConcept C2522767166 @default.
- W2996815539 hasConcept C26517878 @default.
- W2996815539 hasConcept C31258907 @default.
- W2996815539 hasConcept C38652104 @default.
- W2996815539 hasConcept C41008148 @default.
- W2996815539 hasConcept C555944384 @default.
- W2996815539 hasConcept C75684735 @default.
- W2996815539 hasConcept C76155785 @default.
- W2996815539 hasConcept C79158427 @default.
- W2996815539 hasConcept C81860439 @default.
- W2996815539 hasConcept C86803240 @default.
- W2996815539 hasConceptScore W2996815539C118518473 @default.
- W2996815539 hasConceptScore W2996815539C120217122 @default.
- W2996815539 hasConceptScore W2996815539C124101348 @default.
- W2996815539 hasConceptScore W2996815539C149635348 @default.
- W2996815539 hasConceptScore W2996815539C176563091 @default.
- W2996815539 hasConceptScore W2996815539C18903297 @default.
- W2996815539 hasConceptScore W2996815539C24590314 @default.