Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996916991> ?p ?o ?g. }
- W2996916991 endingPage "317" @default.
- W2996916991 startingPage "305" @default.
- W2996916991 abstract "Aim: Cheminformatics models are able to predict different outputs (activity, property, chemical reactivity) in single molecules or complex molecular systems (catalyzed organic synthesis, metabolic reactions, nanoparticles, etc.). Background: Cheminformatics models are able to predict different outputs (activity, property, chemical reactivity) in single molecules or complex molecular systems (catalyzed organic synthesis, metabolic reactions, nanoparticles, etc.). Objective: Cheminformatics prediction of complex catalytic enantioselective reactions is a major goal in organic synthesis research and chemical industry. Markov Chain Molecular Descriptors (MCDs) have been largely used to solve Cheminformatics problems. There are different types of Markov chain descriptors such as Markov-Shannon entropies (Shk), Markov Means (Mk), Markov Moments (πk), etc. However, there are other possible MCDs that have not been used before. In addition, the calculation of MCDs is done very often using specific software not always available for general users and there is not an R library public available for the calculation of MCDs. This fact, limits the availability of MCMDbased Cheminformatics procedures. Methods: We studied the enantiomeric excess ee(%)[Rcat] for 324 α-amidoalkylation reactions. These reactions have a complex mechanism depending on various factors. The model includes MCDs of the substrate, solvent, chiral catalyst, product along with values of time of reaction, temperature, load of catalyst, etc. We tested several Machine Learning regression algorithms. The Random Forest regression model has R2 > 0.90 in training and test. Secondly, the biological activity of 5644 compounds against colorectal cancer was studied. Results: We developed very interesting model able to predict with Specificity and Sensitivity 70-82% the cases of preclinical assays in both training and validation series. Conclusion: The work shows the potential of the new tool for computational studies in organic and medicinal chemistry." @default.
- W2996916991 created "2020-01-10" @default.
- W2996916991 creator A5013497733 @default.
- W2996916991 creator A5014162763 @default.
- W2996916991 creator A5017246181 @default.
- W2996916991 creator A5019373601 @default.
- W2996916991 creator A5037420609 @default.
- W2996916991 creator A5049197463 @default.
- W2996916991 creator A5058919066 @default.
- W2996916991 creator A5060963430 @default.
- W2996916991 creator A5067390527 @default.
- W2996916991 creator A5076344131 @default.
- W2996916991 creator A5082102542 @default.
- W2996916991 creator A5086834061 @default.
- W2996916991 date "2020-03-27" @default.
- W2996916991 modified "2023-10-18" @default.
- W2996916991 title "MCDCalc: Markov Chain Molecular Descriptors Calculator for Medicinal Chemistry" @default.
- W2996916991 cites W118490201 @default.
- W2996916991 cites W1520066836 @default.
- W2996916991 cites W1965449936 @default.
- W2996916991 cites W1966655311 @default.
- W2996916991 cites W1980662858 @default.
- W2996916991 cites W1980896239 @default.
- W2996916991 cites W1983355850 @default.
- W2996916991 cites W1996580348 @default.
- W2996916991 cites W2001032491 @default.
- W2996916991 cites W2009615511 @default.
- W2996916991 cites W2011729909 @default.
- W2996916991 cites W2012418753 @default.
- W2996916991 cites W2013788552 @default.
- W2996916991 cites W2019781623 @default.
- W2996916991 cites W2035032868 @default.
- W2996916991 cites W2039050117 @default.
- W2996916991 cites W2039828250 @default.
- W2996916991 cites W2045481913 @default.
- W2996916991 cites W2049012837 @default.
- W2996916991 cites W2051280005 @default.
- W2996916991 cites W2059246929 @default.
- W2996916991 cites W2066877028 @default.
- W2996916991 cites W2071537071 @default.
- W2996916991 cites W2081048890 @default.
- W2996916991 cites W2085351645 @default.
- W2996916991 cites W2089416959 @default.
- W2996916991 cites W2092001184 @default.
- W2996916991 cites W2113314073 @default.
- W2996916991 cites W2119984183 @default.
- W2996916991 cites W2121875517 @default.
- W2996916991 cites W2123830712 @default.
- W2996916991 cites W2132057369 @default.
- W2996916991 cites W2132075562 @default.
- W2996916991 cites W2133930842 @default.
- W2996916991 cites W2134019393 @default.
- W2996916991 cites W2135557522 @default.
- W2996916991 cites W2137226045 @default.
- W2996916991 cites W2147396454 @default.
- W2996916991 cites W2168502620 @default.
- W2996916991 cites W2173809998 @default.
- W2996916991 cites W2264671791 @default.
- W2996916991 cites W2284551525 @default.
- W2996916991 cites W2291937760 @default.
- W2996916991 cites W2304681810 @default.
- W2996916991 cites W2318270387 @default.
- W2996916991 cites W2319524346 @default.
- W2996916991 cites W2322073322 @default.
- W2996916991 cites W2324352530 @default.
- W2996916991 cites W2328101130 @default.
- W2996916991 cites W2331903788 @default.
- W2996916991 cites W2333116949 @default.
- W2996916991 cites W2333743404 @default.
- W2996916991 cites W2341624644 @default.
- W2996916991 cites W2470172036 @default.
- W2996916991 cites W2552541758 @default.
- W2996916991 cites W2588136288 @default.
- W2996916991 cites W2615819611 @default.
- W2996916991 cites W2755651226 @default.
- W2996916991 cites W2761885355 @default.
- W2996916991 cites W2770645605 @default.
- W2996916991 cites W2784432193 @default.
- W2996916991 cites W2812104124 @default.
- W2996916991 cites W2939494316 @default.
- W2996916991 cites W2950906342 @default.
- W2996916991 cites W2951228061 @default.
- W2996916991 cites W2952168010 @default.
- W2996916991 cites W2952191429 @default.
- W2996916991 cites W2979028638 @default.
- W2996916991 cites W2980561531 @default.
- W2996916991 cites W4253059622 @default.
- W2996916991 cites W625759101 @default.
- W2996916991 doi "https://doi.org/10.2174/1568026620666191226092431" @default.
- W2996916991 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31878856" @default.
- W2996916991 hasPublicationYear "2020" @default.
- W2996916991 type Work @default.
- W2996916991 sameAs 2996916991 @default.
- W2996916991 citedByCount "3" @default.
- W2996916991 countsByYear W29969169912020 @default.
- W2996916991 countsByYear W29969169912023 @default.
- W2996916991 crossrefType "journal-article" @default.
- W2996916991 hasAuthorship W2996916991A5013497733 @default.