Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996934030> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2996934030 endingPage "96" @default.
- W2996934030 startingPage "87" @default.
- W2996934030 abstract "Word embeddings (WE) have received much attention recently as word to numeric vectors architecture for all text processing approaches and has been a great asset for a large variety of NLP tasks. Most of text processing task tried to convert text components like sentences to numeric matrix to apply their processing algorithms. But the most important problems in all word vector-based text processing approaches are different sentences size and as a result, different dimension of sentences matrices. In this paper, we suggest an efficient but simple statistical method to convert text sentences into equal dimension and normalized matrices Proposed method aims to combines three most efficient methods (averaging based, most likely n-grams, and word’s mover distance) to use their advantages and reduce their constraints. The unique size resulting matrix does not depend on language, Subject and scope of the text and words semantic concepts. Our results demonstrate that normalized matrices capture complementary aspects of most text processing tasks such as coherence evaluation, text summarization, text classification, automatic essay scoring, and question answering." @default.
- W2996934030 created "2020-01-10" @default.
- W2996934030 creator A5017647326 @default.
- W2996934030 creator A5049097292 @default.
- W2996934030 date "2019-12-01" @default.
- W2996934030 modified "2023-09-23" @default.
- W2996934030 title "A New Method for Sentence Vector Normalization Using Word2vec" @default.
- W2996934030 cites W1662133657 @default.
- W2996934030 cites W1899794420 @default.
- W2996934030 cites W2087946919 @default.
- W2996934030 cites W2251803266 @default.
- W2996934030 cites W2575772377 @default.
- W2996934030 cites W2789909529 @default.
- W2996934030 cites W2793779797 @default.
- W2996934030 cites W2887289980 @default.
- W2996934030 cites W2933057087 @default.
- W2996934030 cites W2963456134 @default.
- W2996934030 cites W3125733373 @default.
- W2996934030 cites W658020064 @default.
- W2996934030 cites W2473050000 @default.
- W2996934030 doi "https://doi.org/10.22075/ijnaa.2019.4177" @default.
- W2996934030 hasPublicationYear "2019" @default.
- W2996934030 type Work @default.
- W2996934030 sameAs 2996934030 @default.
- W2996934030 citedByCount "2" @default.
- W2996934030 countsByYear W29969340302021 @default.
- W2996934030 countsByYear W29969340302022 @default.
- W2996934030 crossrefType "journal-article" @default.
- W2996934030 hasAuthorship W2996934030A5017647326 @default.
- W2996934030 hasAuthorship W2996934030A5049097292 @default.
- W2996934030 hasConcept C136886441 @default.
- W2996934030 hasConcept C144024400 @default.
- W2996934030 hasConcept C154945302 @default.
- W2996934030 hasConcept C170858558 @default.
- W2996934030 hasConcept C19165224 @default.
- W2996934030 hasConcept C202444582 @default.
- W2996934030 hasConcept C204321447 @default.
- W2996934030 hasConcept C2524010 @default.
- W2996934030 hasConcept C2776461190 @default.
- W2996934030 hasConcept C2777530160 @default.
- W2996934030 hasConcept C2779500292 @default.
- W2996934030 hasConcept C33676613 @default.
- W2996934030 hasConcept C33923547 @default.
- W2996934030 hasConcept C41008148 @default.
- W2996934030 hasConcept C41608201 @default.
- W2996934030 hasConcept C90805587 @default.
- W2996934030 hasConceptScore W2996934030C136886441 @default.
- W2996934030 hasConceptScore W2996934030C144024400 @default.
- W2996934030 hasConceptScore W2996934030C154945302 @default.
- W2996934030 hasConceptScore W2996934030C170858558 @default.
- W2996934030 hasConceptScore W2996934030C19165224 @default.
- W2996934030 hasConceptScore W2996934030C202444582 @default.
- W2996934030 hasConceptScore W2996934030C204321447 @default.
- W2996934030 hasConceptScore W2996934030C2524010 @default.
- W2996934030 hasConceptScore W2996934030C2776461190 @default.
- W2996934030 hasConceptScore W2996934030C2777530160 @default.
- W2996934030 hasConceptScore W2996934030C2779500292 @default.
- W2996934030 hasConceptScore W2996934030C33676613 @default.
- W2996934030 hasConceptScore W2996934030C33923547 @default.
- W2996934030 hasConceptScore W2996934030C41008148 @default.
- W2996934030 hasConceptScore W2996934030C41608201 @default.
- W2996934030 hasConceptScore W2996934030C90805587 @default.
- W2996934030 hasIssue "2" @default.
- W2996934030 hasLocation W29969340301 @default.
- W2996934030 hasOpenAccess W2996934030 @default.
- W2996934030 hasPrimaryLocation W29969340301 @default.
- W2996934030 hasRelatedWork W1652573840 @default.
- W2996934030 hasRelatedWork W1992767852 @default.
- W2996934030 hasRelatedWork W1994472257 @default.
- W2996934030 hasRelatedWork W2388932883 @default.
- W2996934030 hasRelatedWork W2391685311 @default.
- W2996934030 hasRelatedWork W2593304276 @default.
- W2996934030 hasRelatedWork W2766034339 @default.
- W2996934030 hasRelatedWork W2964279163 @default.
- W2996934030 hasRelatedWork W2986710690 @default.
- W2996934030 hasRelatedWork W2998914929 @default.
- W2996934030 hasRelatedWork W3048610010 @default.
- W2996934030 hasRelatedWork W3097758564 @default.
- W2996934030 hasRelatedWork W31399744 @default.
- W2996934030 hasRelatedWork W3147196961 @default.
- W2996934030 hasRelatedWork W3155546041 @default.
- W2996934030 hasRelatedWork W3176848562 @default.
- W2996934030 hasRelatedWork W3203622869 @default.
- W2996934030 hasRelatedWork W2962501590 @default.
- W2996934030 hasRelatedWork W3040421347 @default.
- W2996934030 hasRelatedWork W3150517868 @default.
- W2996934030 hasVolume "10" @default.
- W2996934030 isParatext "false" @default.
- W2996934030 isRetracted "false" @default.
- W2996934030 magId "2996934030" @default.
- W2996934030 workType "article" @default.