Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996966257> ?p ?o ?g. }
- W2996966257 endingPage "e16528" @default.
- W2996966257 startingPage "e16528" @default.
- W2996966257 abstract "Background Burnout (BO), a critical syndrome particularly for nurses in health care settings, substantially affects their physical and psychological status, the institute’s well-being, and indirectly, patient outcomes. However, objectively classifying BO levels has not been defined and noticed in the literature. Objective The aim of this study is to build a model using the convolutional neural network (CNN) to develop an app for automatic detection and classification of nurse BO using the Maslach Burnout Inventory–Human Services Survey (MBI-HSS) to help assess nurse BO at an earlier stage. Methods We recruited 1002 nurses working in a medical center in Taiwan to complete the Chinese version of the 20-item MBI-HSS in August 2016. The k-mean and CNN were used as unsupervised and supervised learnings for dividing nurses into two classes (n=531 and n=471 of suspicious BO+ and BO−, respectively) and building a BO predictive model to estimate 38 parameters. Data were separated into training and testing sets in a proportion 70%:30%, and the former was used to predict the latter. We calculated the sensitivity, specificity, and receiver operating characteristic curve (area under the curve) across studies for comparison. An app predicting respondent BO was developed involving the model’s 38 estimated parameters for a website assessment. Results We observed that (1) the 20-item model yields a higher accuracy rate (0.95) with an area under the curve of 0.97 (95% CI 0.94-0.95) based on the 1002 cases, (2) the scheme named matching personal response to adapt for the correct classification in model drives the prior model’s predictive accuracy at 100%, (3) the 700-case training set with 0.96 accuracy predicts the 302-case testing set reaching an accuracy of 0.91, and (4) an available MBI-HSS app for nurses predicting BO was successfully developed and demonstrated in this study. Conclusions The 20-item model with the 38 parameters estimated by using CNN for improving the accuracy of nurse BO has been particularly demonstrated in Excel (Microsoft Corp). An app developed for helping nurses to self-assess job BO at an early stage is required for application in the future." @default.
- W2996966257 created "2020-01-10" @default.
- W2996966257 creator A5022483486 @default.
- W2996966257 creator A5028461908 @default.
- W2996966257 creator A5052356325 @default.
- W2996966257 creator A5053809841 @default.
- W2996966257 creator A5084833873 @default.
- W2996966257 creator A5088550077 @default.
- W2996966257 date "2020-05-07" @default.
- W2996966257 modified "2023-09-26" @default.
- W2996966257 title "An App Developed for Detecting Nurse Burnouts Using the Convolutional Neural Networks in Microsoft Excel: Population-Based Questionnaire Study" @default.
- W2996966257 cites W1528763127 @default.
- W2996966257 cites W1597202457 @default.
- W2996966257 cites W1720359923 @default.
- W2996966257 cites W1967347828 @default.
- W2996966257 cites W1981913869 @default.
- W2996966257 cites W2002848803 @default.
- W2996966257 cites W2006961273 @default.
- W2996966257 cites W2012516971 @default.
- W2996966257 cites W2021172253 @default.
- W2996966257 cites W2029193866 @default.
- W2996966257 cites W2032134776 @default.
- W2996966257 cites W2035903288 @default.
- W2996966257 cites W2043066204 @default.
- W2996966257 cites W2049298932 @default.
- W2996966257 cites W2051039162 @default.
- W2996966257 cites W2078310877 @default.
- W2996966257 cites W2078763067 @default.
- W2996966257 cites W2098574657 @default.
- W2996966257 cites W2107453734 @default.
- W2996966257 cites W2127786713 @default.
- W2996966257 cites W2128312482 @default.
- W2996966257 cites W2129018774 @default.
- W2996966257 cites W2163255932 @default.
- W2996966257 cites W2290138556 @default.
- W2996966257 cites W2327636434 @default.
- W2996966257 cites W2531405743 @default.
- W2996966257 cites W2546819379 @default.
- W2996966257 cites W2561981131 @default.
- W2996966257 cites W2593108660 @default.
- W2996966257 cites W2732390135 @default.
- W2996966257 cites W2942975361 @default.
- W2996966257 cites W2947377333 @default.
- W2996966257 cites W2949497754 @default.
- W2996966257 cites W2971361125 @default.
- W2996966257 cites W4213284804 @default.
- W2996966257 cites W4231109964 @default.
- W2996966257 cites W4244367646 @default.
- W2996966257 doi "https://doi.org/10.2196/16528" @default.
- W2996966257 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7243132" @default.
- W2996966257 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32379050" @default.
- W2996966257 hasPublicationYear "2020" @default.
- W2996966257 type Work @default.
- W2996966257 sameAs 2996966257 @default.
- W2996966257 citedByCount "26" @default.
- W2996966257 countsByYear W29969662572020 @default.
- W2996966257 countsByYear W29969662572021 @default.
- W2996966257 countsByYear W29969662572022 @default.
- W2996966257 countsByYear W29969662572023 @default.
- W2996966257 crossrefType "journal-article" @default.
- W2996966257 hasAuthorship W2996966257A5022483486 @default.
- W2996966257 hasAuthorship W2996966257A5028461908 @default.
- W2996966257 hasAuthorship W2996966257A5052356325 @default.
- W2996966257 hasAuthorship W2996966257A5053809841 @default.
- W2996966257 hasAuthorship W2996966257A5084833873 @default.
- W2996966257 hasAuthorship W2996966257A5088550077 @default.
- W2996966257 hasBestOaLocation W29969662571 @default.
- W2996966257 hasConcept C119857082 @default.
- W2996966257 hasConcept C143916079 @default.
- W2996966257 hasConcept C154945302 @default.
- W2996966257 hasConcept C15744967 @default.
- W2996966257 hasConcept C159110408 @default.
- W2996966257 hasConcept C17744445 @default.
- W2996966257 hasConcept C199539241 @default.
- W2996966257 hasConcept C2776640315 @default.
- W2996966257 hasConcept C2908647359 @default.
- W2996966257 hasConcept C41008148 @default.
- W2996966257 hasConcept C58471807 @default.
- W2996966257 hasConcept C70410870 @default.
- W2996966257 hasConcept C71924100 @default.
- W2996966257 hasConcept C81363708 @default.
- W2996966257 hasConcept C99454951 @default.
- W2996966257 hasConceptScore W2996966257C119857082 @default.
- W2996966257 hasConceptScore W2996966257C143916079 @default.
- W2996966257 hasConceptScore W2996966257C154945302 @default.
- W2996966257 hasConceptScore W2996966257C15744967 @default.
- W2996966257 hasConceptScore W2996966257C159110408 @default.
- W2996966257 hasConceptScore W2996966257C17744445 @default.
- W2996966257 hasConceptScore W2996966257C199539241 @default.
- W2996966257 hasConceptScore W2996966257C2776640315 @default.
- W2996966257 hasConceptScore W2996966257C2908647359 @default.
- W2996966257 hasConceptScore W2996966257C41008148 @default.
- W2996966257 hasConceptScore W2996966257C58471807 @default.
- W2996966257 hasConceptScore W2996966257C70410870 @default.
- W2996966257 hasConceptScore W2996966257C71924100 @default.
- W2996966257 hasConceptScore W2996966257C81363708 @default.
- W2996966257 hasConceptScore W2996966257C99454951 @default.
- W2996966257 hasIssue "5" @default.