Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996975964> ?p ?o ?g. }
- W2996975964 endingPage "104428" @default.
- W2996975964 startingPage "104428" @default.
- W2996975964 abstract "Nanostructuring materials to achieve ultra-low lattice thermal conductivity has proven to be extremely attractive for numerous applications such as thermoelectric energy conversion. Anderson localization of phonons due to aperiodicity can reduce thermal conductivity in superlattices, but the lower limit of thermal conductivity remains elusive due to the prohibitively large design space. In this work, we demonstrate that an intuition-based manual search for aperiodic superlattice structures (random multilayers or RMLs) with the lowest thermal conductivity yields only a local minimum, while a genetic algorithm (GA) based approach can efficiently identify the globally minimum thermal conductivity by only exploring a small fraction of the design space. Our results show that this minimum value occurs at an average RML period that is, surprisingly, smaller than the period corresponding to the minimum SL thermal conductivity. Above this critical period, scattering of incoherent phonons at interfaces is less, whereas below this period, the room for randomization becomes less, thus putting more coherent phonons out of Anderson localization and causing increased thermal conductivity. Moreover, the lower limit of the thermal conductivity occurs at a moderate rather than maximum randomness of the layer thickness. Our machine learning approach demonstrates a general process of exploring an otherwise prohibitively large design space to gain non-intuitive physical insights." @default.
- W2996975964 created "2020-01-10" @default.
- W2996975964 creator A5023072924 @default.
- W2996975964 creator A5023355659 @default.
- W2996975964 creator A5058380376 @default.
- W2996975964 creator A5063747717 @default.
- W2996975964 creator A5075165599 @default.
- W2996975964 creator A5091497369 @default.
- W2996975964 date "2020-03-01" @default.
- W2996975964 modified "2023-10-16" @default.
- W2996975964 title "Machine learning maximized Anderson localization of phonons in aperiodic superlattices" @default.
- W2996975964 cites W1504787922 @default.
- W2996975964 cites W1678620623 @default.
- W2996975964 cites W1872874674 @default.
- W2996975964 cites W1964501378 @default.
- W2996975964 cites W1966119567 @default.
- W2996975964 cites W1986837805 @default.
- W2996975964 cites W1996775416 @default.
- W2996975964 cites W1997543756 @default.
- W2996975964 cites W1998913294 @default.
- W2996975964 cites W1999909223 @default.
- W2996975964 cites W2014131192 @default.
- W2996975964 cites W2019465613 @default.
- W2996975964 cites W2024330948 @default.
- W2996975964 cites W2033515476 @default.
- W2996975964 cites W2033873461 @default.
- W2996975964 cites W2042056247 @default.
- W2996975964 cites W2048848289 @default.
- W2996975964 cites W2049638322 @default.
- W2996975964 cites W2051836133 @default.
- W2996975964 cites W2053325473 @default.
- W2996975964 cites W2056011546 @default.
- W2996975964 cites W2064939349 @default.
- W2996975964 cites W2066432008 @default.
- W2996975964 cites W2068234471 @default.
- W2996975964 cites W2075242039 @default.
- W2996975964 cites W2077502944 @default.
- W2996975964 cites W2081916121 @default.
- W2996975964 cites W2086916080 @default.
- W2996975964 cites W2153548536 @default.
- W2996975964 cites W2162705063 @default.
- W2996975964 cites W2163382337 @default.
- W2996975964 cites W2163517070 @default.
- W2996975964 cites W2284507603 @default.
- W2996975964 cites W2313952733 @default.
- W2996975964 cites W2328407939 @default.
- W2996975964 cites W2389816682 @default.
- W2996975964 cites W2415374455 @default.
- W2996975964 cites W2442274687 @default.
- W2996975964 cites W2551010291 @default.
- W2996975964 cites W2561474727 @default.
- W2996975964 cites W2593210297 @default.
- W2996975964 cites W2739066022 @default.
- W2996975964 cites W2745297565 @default.
- W2996975964 cites W2790939418 @default.
- W2996975964 cites W2796301380 @default.
- W2996975964 cites W2808651099 @default.
- W2996975964 cites W2809989325 @default.
- W2996975964 cites W2921570729 @default.
- W2996975964 cites W3021484079 @default.
- W2996975964 cites W3042258606 @default.
- W2996975964 cites W3103165470 @default.
- W2996975964 cites W3104759176 @default.
- W2996975964 doi "https://doi.org/10.1016/j.nanoen.2019.104428" @default.
- W2996975964 hasPublicationYear "2020" @default.
- W2996975964 type Work @default.
- W2996975964 sameAs 2996975964 @default.
- W2996975964 citedByCount "50" @default.
- W2996975964 countsByYear W29969759642020 @default.
- W2996975964 countsByYear W29969759642021 @default.
- W2996975964 countsByYear W29969759642022 @default.
- W2996975964 countsByYear W29969759642023 @default.
- W2996975964 crossrefType "journal-article" @default.
- W2996975964 hasAuthorship W2996975964A5023072924 @default.
- W2996975964 hasAuthorship W2996975964A5023355659 @default.
- W2996975964 hasAuthorship W2996975964A5058380376 @default.
- W2996975964 hasAuthorship W2996975964A5063747717 @default.
- W2996975964 hasAuthorship W2996975964A5075165599 @default.
- W2996975964 hasAuthorship W2996975964A5091497369 @default.
- W2996975964 hasBestOaLocation W29969759641 @default.
- W2996975964 hasConcept C104247578 @default.
- W2996975964 hasConcept C105382558 @default.
- W2996975964 hasConcept C105795698 @default.
- W2996975964 hasConcept C114614502 @default.
- W2996975964 hasConcept C121332964 @default.
- W2996975964 hasConcept C121864883 @default.
- W2996975964 hasConcept C125112378 @default.
- W2996975964 hasConcept C159985019 @default.
- W2996975964 hasConcept C192562407 @default.
- W2996975964 hasConcept C207365445 @default.
- W2996975964 hasConcept C24169881 @default.
- W2996975964 hasConcept C26873012 @default.
- W2996975964 hasConcept C33923547 @default.
- W2996975964 hasConcept C49040817 @default.
- W2996975964 hasConcept C63024428 @default.
- W2996975964 hasConcept C97346530 @default.
- W2996975964 hasConcept C97355855 @default.
- W2996975964 hasConceptScore W2996975964C104247578 @default.