Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997029448> ?p ?o ?g. }
- W2997029448 abstract "Comorbidity is the phenomenon of two or more diseases occurring simultaneously not by random chance and presents great challenges to accurate diagnosis and treatment. As an effort toward better understanding the genetic causes of comorbidity, in this work, we have developed a computational method to predict comorbid diseases. Two diseases sharing common genes tend to increase their comorbidity. Previous work shows that after mapping the associated genes onto the human interactome the distance between the two disease modules (subgraphs) is correlated with comorbidity.To fully incorporate structural characteristics of interactome as features into prediction of comorbidity, our method embeds the human interactome into a high dimensional geometric space with weights assigned to the network edges and uses the projection onto different dimension to fingerprint disease modules. A supervised machine learning classifier is then trained to discriminate comorbid diseases versus non-comorbid diseases.In cross-validation using a benchmark dataset of more than 10,000 disease pairs, we report that our model achieves remarkable performance of ROC score = 0.90 for comorbidity threshold at relative risk RR = 0 and 0.76 for comorbidity threshold at RR = 1, and significantly outperforms the previous method and the interactome generated by annotated data. To further incorporate prior knowledge pathways association with diseases, we weight the protein-protein interaction network edges according to their frequency of occurring in those pathways in such a way that edges with higher frequency will more likely be selected in the minimum spanning tree for geometric embedding. Such weighted embedding is shown to lead to further improvement of comorbid disease prediction.The work demonstrates that embedding the two-dimension planar graph of human interactome into a high dimensional geometric space allows for characterizing and capturing disease modules (subgraphs formed by the disease associated genes) from multiple perspectives, and hence provides enriched features for a supervised classifier to discriminate comorbid disease pairs from non-comorbid disease pairs more accurately than based on simply the module separation." @default.
- W2997029448 created "2020-01-10" @default.
- W2997029448 creator A5012836434 @default.
- W2997029448 creator A5028858881 @default.
- W2997029448 date "2019-12-01" @default.
- W2997029448 modified "2023-09-25" @default.
- W2997029448 title "Prediction of comorbid diseases using weighted geometric embedding of human interactome" @default.
- W2997029448 cites W1502810280 @default.
- W2997029448 cites W1576466297 @default.
- W2997029448 cites W1970626613 @default.
- W2997029448 cites W1970809722 @default.
- W2997029448 cites W1978437325 @default.
- W2997029448 cites W1989277387 @default.
- W2997029448 cites W1994803330 @default.
- W2997029448 cites W2010707723 @default.
- W2997029448 cites W2010835844 @default.
- W2997029448 cites W2025136041 @default.
- W2997029448 cites W2044090909 @default.
- W2997029448 cites W2044197183 @default.
- W2997029448 cites W2050583899 @default.
- W2997029448 cites W2056782561 @default.
- W2997029448 cites W2061425021 @default.
- W2997029448 cites W2079474654 @default.
- W2997029448 cites W2083045667 @default.
- W2997029448 cites W2094397139 @default.
- W2997029448 cites W2099701744 @default.
- W2997029448 cites W2101181377 @default.
- W2997029448 cites W2101822581 @default.
- W2997029448 cites W2118886215 @default.
- W2997029448 cites W2128891400 @default.
- W2997029448 cites W2132484122 @default.
- W2997029448 cites W2137200212 @default.
- W2997029448 cites W2139556877 @default.
- W2997029448 cites W2144534805 @default.
- W2997029448 cites W2147330086 @default.
- W2997029448 cites W2152415104 @default.
- W2997029448 cites W2157825442 @default.
- W2997029448 cites W2169803818 @default.
- W2997029448 cites W2171146155 @default.
- W2997029448 cites W2317901060 @default.
- W2997029448 cites W2393319904 @default.
- W2997029448 cites W2415243320 @default.
- W2997029448 cites W2612872092 @default.
- W2997029448 cites W2772590222 @default.
- W2997029448 cites W2962756421 @default.
- W2997029448 cites W3104097132 @default.
- W2997029448 cites W4234945299 @default.
- W2997029448 cites W4237335579 @default.
- W2997029448 doi "https://doi.org/10.1186/s12920-019-0605-5" @default.
- W2997029448 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6936100" @default.
- W2997029448 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31888634" @default.
- W2997029448 hasPublicationYear "2019" @default.
- W2997029448 type Work @default.
- W2997029448 sameAs 2997029448 @default.
- W2997029448 citedByCount "8" @default.
- W2997029448 countsByYear W29970294482021 @default.
- W2997029448 countsByYear W29970294482022 @default.
- W2997029448 countsByYear W29970294482023 @default.
- W2997029448 crossrefType "journal-article" @default.
- W2997029448 hasAuthorship W2997029448A5012836434 @default.
- W2997029448 hasAuthorship W2997029448A5028858881 @default.
- W2997029448 hasBestOaLocation W29970294481 @default.
- W2997029448 hasConcept C104317684 @default.
- W2997029448 hasConcept C118552586 @default.
- W2997029448 hasConcept C119857082 @default.
- W2997029448 hasConcept C124101348 @default.
- W2997029448 hasConcept C150194340 @default.
- W2997029448 hasConcept C154945302 @default.
- W2997029448 hasConcept C2779159551 @default.
- W2997029448 hasConcept C41008148 @default.
- W2997029448 hasConcept C54355233 @default.
- W2997029448 hasConcept C60644358 @default.
- W2997029448 hasConcept C70721500 @default.
- W2997029448 hasConcept C71924100 @default.
- W2997029448 hasConcept C86803240 @default.
- W2997029448 hasConcept C93231420 @default.
- W2997029448 hasConcept C9760119 @default.
- W2997029448 hasConceptScore W2997029448C104317684 @default.
- W2997029448 hasConceptScore W2997029448C118552586 @default.
- W2997029448 hasConceptScore W2997029448C119857082 @default.
- W2997029448 hasConceptScore W2997029448C124101348 @default.
- W2997029448 hasConceptScore W2997029448C150194340 @default.
- W2997029448 hasConceptScore W2997029448C154945302 @default.
- W2997029448 hasConceptScore W2997029448C2779159551 @default.
- W2997029448 hasConceptScore W2997029448C41008148 @default.
- W2997029448 hasConceptScore W2997029448C54355233 @default.
- W2997029448 hasConceptScore W2997029448C60644358 @default.
- W2997029448 hasConceptScore W2997029448C70721500 @default.
- W2997029448 hasConceptScore W2997029448C71924100 @default.
- W2997029448 hasConceptScore W2997029448C86803240 @default.
- W2997029448 hasConceptScore W2997029448C93231420 @default.
- W2997029448 hasConceptScore W2997029448C9760119 @default.
- W2997029448 hasIssue "S7" @default.
- W2997029448 hasLocation W29970294481 @default.
- W2997029448 hasLocation W29970294482 @default.
- W2997029448 hasLocation W29970294483 @default.
- W2997029448 hasLocation W29970294484 @default.
- W2997029448 hasOpenAccess W2997029448 @default.
- W2997029448 hasPrimaryLocation W29970294481 @default.
- W2997029448 hasRelatedWork W2961085424 @default.