Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997130119> ?p ?o ?g. }
- W2997130119 endingPage "1828" @default.
- W2997130119 startingPage "1817" @default.
- W2997130119 abstract "Abstract Many low-angle normal faults (dip ≤30°) accommodate tens of kilometers of crustal extension, but their mechanics remain contentious. Most models for low-angle normal fault slip assume vertical maximum principal stress σ1, leading many authors to conclude that low-angle normal faults are poorly oriented in the stress field (≥60° from σ1) and weak (low friction). In contrast, models for low-angle normal fault formation in isotropic rocks typically assume Coulomb failure and require inclined σ1 (no misorientation). Here, a data-based, mechanical-tectonic model is presented for formation of the Whipple detachment fault, southeastern California. The model honors local and regional geologic and tectonic history and laboratory friction measurements. The Whipple detachment fault formed progressively in the brittle-plastic transition by linking of “minidetachments,” which are small-scale analogs (meters to kilometers in length) in the upper footwall. Minidetachments followed mylonitic anisotropy along planes of maximum shear stress (45° from the maximum principal stress), not Coulomb fractures. They evolved from mylonitic flow to cataclasis and frictional slip at 300–400 °C and ∼9.5 km depth, while fluid pressure fell from lithostatic to hydrostatic levels. Minidetachment friction was presumably high (0.6–0.85), based upon formation of quartzofeldspathic cataclasite and pseudotachylyte. Similar mechanics are inferred for both the minidetachments and the Whipple detachment fault, driven by high differential stress (∼150–160 MPa). A Mohr construction is presented with the fault dip as the main free parameter. Using “Byerlee friction” (0.6–0.85) on the minidetachments and the Whipple detachment fault, and internal friction (1.0–1.7) on newly formed Reidel shears, the initial fault dips are calculated at 16°–26°, with σ1 plunging ∼61°–71° northeast. Linked minidetachments probably were not well aligned, and slip on the evolving Whipple detachment fault probably contributed to fault smoothing, by off-fault fracturing and cataclasis, and to formation of the fault core and fractured damage zone. Stress rotation may have occurred only within the mylonitic shear zone, but asymmetric tectonic forces applied to the brittle crust probably caused gradual rotation of σ1 above it as a result of: (1) the upward force applied to the base of marginal North America by buoyant asthenosphere upwelling into an opening slab-free window and/or (2) basal, top-to-the-NE shear traction due to midcrustal mylonitic flow during tectonic exhumation of the Orocopia Schist. The mechanical-tectonic model probably applies directly to low-angle normal faults of the lower Colorado River extensional corridor, and aspects of the model (e.g., significance of anisotropy, stress rotation) likely apply to formation of other strong low-angle normal faults." @default.
- W2997130119 created "2020-01-10" @default.
- W2997130119 creator A5001415901 @default.
- W2997130119 date "2019-12-31" @default.
- W2997130119 modified "2023-10-17" @default.
- W2997130119 title "How a strong low-angle normal fault formed: The Whipple detachment, southeastern California" @default.
- W2997130119 cites W1630919297 @default.
- W2997130119 cites W1966052254 @default.
- W2997130119 cites W1971792420 @default.
- W2997130119 cites W1972167093 @default.
- W2997130119 cites W1975633233 @default.
- W2997130119 cites W1976346293 @default.
- W2997130119 cites W1977156689 @default.
- W2997130119 cites W1979024345 @default.
- W2997130119 cites W1979739422 @default.
- W2997130119 cites W1981284128 @default.
- W2997130119 cites W1983505775 @default.
- W2997130119 cites W1984706520 @default.
- W2997130119 cites W1986406739 @default.
- W2997130119 cites W1988590998 @default.
- W2997130119 cites W1993987904 @default.
- W2997130119 cites W1994182127 @default.
- W2997130119 cites W1994320455 @default.
- W2997130119 cites W1995115331 @default.
- W2997130119 cites W1996603428 @default.
- W2997130119 cites W1998068180 @default.
- W2997130119 cites W2000404423 @default.
- W2997130119 cites W2001008178 @default.
- W2997130119 cites W2001708611 @default.
- W2997130119 cites W2003897162 @default.
- W2997130119 cites W2006115899 @default.
- W2997130119 cites W2006210223 @default.
- W2997130119 cites W2009477755 @default.
- W2997130119 cites W2009669406 @default.
- W2997130119 cites W2021593428 @default.
- W2997130119 cites W2024058737 @default.
- W2997130119 cites W2024295140 @default.
- W2997130119 cites W2030557416 @default.
- W2997130119 cites W2033216682 @default.
- W2997130119 cites W2035364481 @default.
- W2997130119 cites W2035938681 @default.
- W2997130119 cites W2039132692 @default.
- W2997130119 cites W2039452981 @default.
- W2997130119 cites W2040822598 @default.
- W2997130119 cites W2043222209 @default.
- W2997130119 cites W2046565965 @default.
- W2997130119 cites W2047014529 @default.
- W2997130119 cites W2051425762 @default.
- W2997130119 cites W2056521926 @default.
- W2997130119 cites W2058834991 @default.
- W2997130119 cites W2059777175 @default.
- W2997130119 cites W2061563954 @default.
- W2997130119 cites W2063342502 @default.
- W2997130119 cites W2063443007 @default.
- W2997130119 cites W2074078345 @default.
- W2997130119 cites W2075566610 @default.
- W2997130119 cites W2087400323 @default.
- W2997130119 cites W2092086965 @default.
- W2997130119 cites W2111924446 @default.
- W2997130119 cites W2120031454 @default.
- W2997130119 cites W2120572721 @default.
- W2997130119 cites W2127136348 @default.
- W2997130119 cites W2127203865 @default.
- W2997130119 cites W2127943816 @default.
- W2997130119 cites W2133945645 @default.
- W2997130119 cites W2138655928 @default.
- W2997130119 cites W2157826822 @default.
- W2997130119 cites W2169991175 @default.
- W2997130119 cites W2170190688 @default.
- W2997130119 cites W2275352864 @default.
- W2997130119 cites W2288971599 @default.
- W2997130119 cites W2315393910 @default.
- W2997130119 cites W2328796538 @default.
- W2997130119 cites W2337008976 @default.
- W2997130119 cites W2344596156 @default.
- W2997130119 cites W2345932527 @default.
- W2997130119 cites W2419143623 @default.
- W2997130119 cites W2466304785 @default.
- W2997130119 cites W2523281918 @default.
- W2997130119 cites W2527157123 @default.
- W2997130119 cites W2527930405 @default.
- W2997130119 cites W2532215347 @default.
- W2997130119 cites W2536711694 @default.
- W2997130119 cites W2554658301 @default.
- W2997130119 cites W2895780278 @default.
- W2997130119 cites W2900851192 @default.
- W2997130119 cites W4249581307 @default.
- W2997130119 cites W4251061100 @default.
- W2997130119 cites W4377205393 @default.
- W2997130119 doi "https://doi.org/10.1130/b35386.1" @default.
- W2997130119 hasPublicationYear "2019" @default.
- W2997130119 type Work @default.
- W2997130119 sameAs 2997130119 @default.
- W2997130119 citedByCount "6" @default.
- W2997130119 countsByYear W29971301192020 @default.
- W2997130119 countsByYear W29971301192021 @default.
- W2997130119 countsByYear W29971301192022 @default.
- W2997130119 crossrefType "journal-article" @default.