Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997133053> ?p ?o ?g. }
- W2997133053 endingPage "107711" @default.
- W2997133053 startingPage "107711" @default.
- W2997133053 abstract "The use of remote sensing data for predicting wheat yield and quality is becoming a more feasible alternative to destructive and post-harvest laboratory-based test methods. However, most prediction models which make use of remote sensing data are statistical rather than mechanistic, therefore difficult to extend at interannual and regional scales. In this work, an interannual expandable wheat yield and quality predicting model using hierarchical linear modeling (HLM) was developed, integrating hyperspectral and meteorological data. The results showed that the ordinary least squares (OLS) regression for predicting wheat yield and grain protein content (GPC), one key indicator of grain quality, had low stability at the interannual extension. The predictive power for yield by HLM method was higher than OLS, with R2, RMSEv and nRMSE values of 0.75, 1.10 t/ha, and 20.70 %, respectively. GPC prediction by the HLM method was enhanced when the gluten type was considered, with R2, RMSEv and nRMSE values of 0.85, 1.02 %, and 6.87 %, respectively. The results of this study confirmed that HLM can be a robust method for improving yield and GPC predicting stability under various growing seasons in winter wheat." @default.
- W2997133053 created "2020-01-10" @default.
- W2997133053 creator A5000200794 @default.
- W2997133053 creator A5005698391 @default.
- W2997133053 creator A5007427445 @default.
- W2997133053 creator A5017381482 @default.
- W2997133053 creator A5017491136 @default.
- W2997133053 creator A5020713851 @default.
- W2997133053 creator A5028303505 @default.
- W2997133053 creator A5045905103 @default.
- W2997133053 date "2020-03-01" @default.
- W2997133053 modified "2023-10-16" @default.
- W2997133053 title "A hierarchical interannual wheat yield and grain protein prediction model using spectral vegetative indices and meteorological data" @default.
- W2997133053 cites W1125121475 @default.
- W2997133053 cites W1545054898 @default.
- W2997133053 cites W1940533278 @default.
- W2997133053 cites W1980703241 @default.
- W2997133053 cites W1981903823 @default.
- W2997133053 cites W1999211898 @default.
- W2997133053 cites W2009112716 @default.
- W2997133053 cites W2015613423 @default.
- W2997133053 cites W2028374950 @default.
- W2997133053 cites W2036003376 @default.
- W2997133053 cites W2038255777 @default.
- W2997133053 cites W2052700773 @default.
- W2997133053 cites W2057891673 @default.
- W2997133053 cites W2059138966 @default.
- W2997133053 cites W2073067249 @default.
- W2997133053 cites W2075801927 @default.
- W2997133053 cites W2081734510 @default.
- W2997133053 cites W2094420085 @default.
- W2997133053 cites W2095493264 @default.
- W2997133053 cites W2095939249 @default.
- W2997133053 cites W2100096075 @default.
- W2997133053 cites W2102341754 @default.
- W2997133053 cites W2109006150 @default.
- W2997133053 cites W2118703810 @default.
- W2997133053 cites W2153598078 @default.
- W2997133053 cites W2157760685 @default.
- W2997133053 cites W2159142986 @default.
- W2997133053 cites W2160566385 @default.
- W2997133053 cites W2167556755 @default.
- W2997133053 cites W2167869331 @default.
- W2997133053 cites W2195361594 @default.
- W2997133053 cites W2202019762 @default.
- W2997133053 cites W2317107098 @default.
- W2997133053 cites W2318751315 @default.
- W2997133053 cites W2490043287 @default.
- W2997133053 cites W2593248160 @default.
- W2997133053 cites W2646675373 @default.
- W2997133053 cites W2767273025 @default.
- W2997133053 cites W2808053670 @default.
- W2997133053 cites W2896061162 @default.
- W2997133053 cites W2896437316 @default.
- W2997133053 cites W2900420505 @default.
- W2997133053 cites W2906337252 @default.
- W2997133053 doi "https://doi.org/10.1016/j.fcr.2019.107711" @default.
- W2997133053 hasPublicationYear "2020" @default.
- W2997133053 type Work @default.
- W2997133053 sameAs 2997133053 @default.
- W2997133053 citedByCount "29" @default.
- W2997133053 countsByYear W29971330532020 @default.
- W2997133053 countsByYear W29971330532021 @default.
- W2997133053 countsByYear W29971330532022 @default.
- W2997133053 countsByYear W29971330532023 @default.
- W2997133053 crossrefType "journal-article" @default.
- W2997133053 hasAuthorship W2997133053A5000200794 @default.
- W2997133053 hasAuthorship W2997133053A5005698391 @default.
- W2997133053 hasAuthorship W2997133053A5007427445 @default.
- W2997133053 hasAuthorship W2997133053A5017381482 @default.
- W2997133053 hasAuthorship W2997133053A5017491136 @default.
- W2997133053 hasAuthorship W2997133053A5020713851 @default.
- W2997133053 hasAuthorship W2997133053A5028303505 @default.
- W2997133053 hasAuthorship W2997133053A5045905103 @default.
- W2997133053 hasConcept C105795698 @default.
- W2997133053 hasConcept C112972136 @default.
- W2997133053 hasConcept C119857082 @default.
- W2997133053 hasConcept C134121241 @default.
- W2997133053 hasConcept C152877465 @default.
- W2997133053 hasConcept C154945302 @default.
- W2997133053 hasConcept C159078339 @default.
- W2997133053 hasConcept C191897082 @default.
- W2997133053 hasConcept C192562407 @default.
- W2997133053 hasConcept C3018661444 @default.
- W2997133053 hasConcept C33923547 @default.
- W2997133053 hasConcept C39432304 @default.
- W2997133053 hasConcept C41008148 @default.
- W2997133053 hasConcept C45804977 @default.
- W2997133053 hasConcept C48921125 @default.
- W2997133053 hasConcept C53059260 @default.
- W2997133053 hasConcept C6557445 @default.
- W2997133053 hasConcept C83546350 @default.
- W2997133053 hasConcept C86803240 @default.
- W2997133053 hasConcept C99656134 @default.
- W2997133053 hasConceptScore W2997133053C105795698 @default.
- W2997133053 hasConceptScore W2997133053C112972136 @default.
- W2997133053 hasConceptScore W2997133053C119857082 @default.
- W2997133053 hasConceptScore W2997133053C134121241 @default.