Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997135317> ?p ?o ?g. }
- W2997135317 endingPage "105790" @default.
- W2997135317 startingPage "105790" @default.
- W2997135317 abstract "The outputs of photovoltaic (PV) power are random and uncertain due to the variations of meteorological elements, which may disturb the safety and stability of power system operation. Hence, precise day-ahead PV power forecasting is crucial in renewable energy utilization, as it is beneficial to power generation schedule and short-term dispatch of the PV integrated power grid. In this study, a novel day-ahead PV power forecasting approach based on deep learning is proposed and validated. Firstly, two novel deep convolutional neural networks (CNNs), i.e. residual network (ResNet) and dense convolutional network (DenseNet), are introduced as the core models of forecasting. Secondly, a new data preprocessing is proposed to construct input feature maps for the two novel CNNs, which involves historical PV power series, meteorological elements and numerical weather prediction. Thirdly, a meta learning strategy based on multi-loss-function network is proposed to train the two deep networks, which can ensure a high robustness of the extracted convolutional features. Owing to the learning strategy and unique architectures of the two novel CNNs, they are designed into relatively deep architectures with superb nonlinear representation abilities, which consist of more than ten layers. Both point and probabilistic forecasting results are provided in the case study, demonstrating the accuracy and reliability of the proposed forecasting approach." @default.
- W2997135317 created "2020-01-10" @default.
- W2997135317 creator A5002222939 @default.
- W2997135317 creator A5004521832 @default.
- W2997135317 creator A5010781360 @default.
- W2997135317 creator A5036954210 @default.
- W2997135317 creator A5053158459 @default.
- W2997135317 creator A5076068025 @default.
- W2997135317 date "2020-06-01" @default.
- W2997135317 modified "2023-10-14" @default.
- W2997135317 title "Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning" @default.
- W2997135317 cites W1965043343 @default.
- W2997135317 cites W1983113304 @default.
- W2997135317 cites W2000982976 @default.
- W2997135317 cites W2019900743 @default.
- W2997135317 cites W2026844045 @default.
- W2997135317 cites W2061482009 @default.
- W2997135317 cites W2061509928 @default.
- W2997135317 cites W2064675550 @default.
- W2997135317 cites W2087186270 @default.
- W2997135317 cites W2136922672 @default.
- W2997135317 cites W2327473694 @default.
- W2997135317 cites W2425305442 @default.
- W2997135317 cites W2469734051 @default.
- W2997135317 cites W2517253232 @default.
- W2997135317 cites W2560370080 @default.
- W2997135317 cites W2616881109 @default.
- W2997135317 cites W2621810719 @default.
- W2997135317 cites W2621841909 @default.
- W2997135317 cites W2626166063 @default.
- W2997135317 cites W2734571072 @default.
- W2997135317 cites W2751159520 @default.
- W2997135317 cites W2751698537 @default.
- W2997135317 cites W2759111342 @default.
- W2997135317 cites W2762566725 @default.
- W2997135317 cites W2762797296 @default.
- W2997135317 cites W2763128055 @default.
- W2997135317 cites W2765525403 @default.
- W2997135317 cites W2765773171 @default.
- W2997135317 cites W2767559196 @default.
- W2997135317 cites W2769156605 @default.
- W2997135317 cites W2769440087 @default.
- W2997135317 cites W2770982579 @default.
- W2997135317 cites W2773088926 @default.
- W2997135317 cites W2773629498 @default.
- W2997135317 cites W2775807939 @default.
- W2997135317 cites W2790283872 @default.
- W2997135317 cites W2790303971 @default.
- W2997135317 cites W2790381093 @default.
- W2997135317 cites W2790964730 @default.
- W2997135317 cites W2792244305 @default.
- W2997135317 cites W2792921542 @default.
- W2997135317 cites W2793121129 @default.
- W2997135317 cites W2801973365 @default.
- W2997135317 cites W2802145672 @default.
- W2997135317 cites W2802476978 @default.
- W2997135317 cites W2811036446 @default.
- W2997135317 cites W2834494841 @default.
- W2997135317 cites W2888449021 @default.
- W2997135317 cites W2888945543 @default.
- W2997135317 cites W2891967931 @default.
- W2997135317 cites W2899494475 @default.
- W2997135317 cites W2903265999 @default.
- W2997135317 cites W2904092665 @default.
- W2997135317 cites W2912623183 @default.
- W2997135317 cites W2914856364 @default.
- W2997135317 cites W2917308787 @default.
- W2997135317 cites W2917491574 @default.
- W2997135317 cites W2942485381 @default.
- W2997135317 cites W3119055825 @default.
- W2997135317 cites W4241996101 @default.
- W2997135317 cites W4376453727 @default.
- W2997135317 doi "https://doi.org/10.1016/j.ijepes.2019.105790" @default.
- W2997135317 hasPublicationYear "2020" @default.
- W2997135317 type Work @default.
- W2997135317 sameAs 2997135317 @default.
- W2997135317 citedByCount "146" @default.
- W2997135317 countsByYear W29971353172020 @default.
- W2997135317 countsByYear W29971353172021 @default.
- W2997135317 countsByYear W29971353172022 @default.
- W2997135317 countsByYear W29971353172023 @default.
- W2997135317 crossrefType "journal-article" @default.
- W2997135317 hasAuthorship W2997135317A5002222939 @default.
- W2997135317 hasAuthorship W2997135317A5004521832 @default.
- W2997135317 hasAuthorship W2997135317A5010781360 @default.
- W2997135317 hasAuthorship W2997135317A5036954210 @default.
- W2997135317 hasAuthorship W2997135317A5053158459 @default.
- W2997135317 hasAuthorship W2997135317A5076068025 @default.
- W2997135317 hasConcept C104317684 @default.
- W2997135317 hasConcept C108583219 @default.
- W2997135317 hasConcept C111919701 @default.
- W2997135317 hasConcept C119599485 @default.
- W2997135317 hasConcept C119857082 @default.
- W2997135317 hasConcept C121332964 @default.
- W2997135317 hasConcept C122282355 @default.
- W2997135317 hasConcept C127413603 @default.
- W2997135317 hasConcept C154945302 @default.
- W2997135317 hasConcept C163258240 @default.