Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997167814> ?p ?o ?g. }
- W2997167814 endingPage "193" @default.
- W2997167814 startingPage "177" @default.
- W2997167814 abstract "This study proposes a random effects model based on inverse Gaussian process, where the mixture normal distribution is used to account for both unit-specific and subpopulation-specific heterogeneities. The proposed model can capture heterogeneities due to subpopulations in the same population or the units from different batches. A new Expectation-Maximization (EM) algorithm is developed for point estimation and the bias-corrected bootstrap is used for interval estimation. We show that the EM algorithm updates the parameters based on the gradient of the loglikelihood function via a projection matrix. In addition, the convergence rate depends on the condition number that can be obtained by the projection matrix and the Hessian matrix of the loglikelihood function. A simulation study is conducted to assess the proposed model and the inference methods, and two real degradation datasets are analyzed for illustration." @default.
- W2997167814 created "2020-01-10" @default.
- W2997167814 creator A5045983324 @default.
- W2997167814 creator A5069897493 @default.
- W2997167814 creator A5071353144 @default.
- W2997167814 date "2020-05-01" @default.
- W2997167814 modified "2023-10-17" @default.
- W2997167814 title "Degradation modeling with subpopulation heterogeneities based on the inverse Gaussian process" @default.
- W2997167814 cites W1536497620 @default.
- W2997167814 cites W1932372884 @default.
- W2997167814 cites W1974635664 @default.
- W2997167814 cites W1984114198 @default.
- W2997167814 cites W1985827874 @default.
- W2997167814 cites W2009048088 @default.
- W2997167814 cites W2019486793 @default.
- W2997167814 cites W2023083702 @default.
- W2997167814 cites W2038658511 @default.
- W2997167814 cites W2053742104 @default.
- W2997167814 cites W2057458028 @default.
- W2997167814 cites W2060496771 @default.
- W2997167814 cites W2061752989 @default.
- W2997167814 cites W2064494361 @default.
- W2997167814 cites W2084254889 @default.
- W2997167814 cites W2108898839 @default.
- W2997167814 cites W2112935810 @default.
- W2997167814 cites W2134199473 @default.
- W2997167814 cites W2150847344 @default.
- W2997167814 cites W2159677816 @default.
- W2997167814 cites W2473198494 @default.
- W2997167814 cites W2558515677 @default.
- W2997167814 cites W2561529988 @default.
- W2997167814 cites W2619999328 @default.
- W2997167814 cites W2768109517 @default.
- W2997167814 cites W2917089157 @default.
- W2997167814 cites W2986432779 @default.
- W2997167814 doi "https://doi.org/10.1016/j.apm.2019.12.017" @default.
- W2997167814 hasPublicationYear "2020" @default.
- W2997167814 type Work @default.
- W2997167814 sameAs 2997167814 @default.
- W2997167814 citedByCount "13" @default.
- W2997167814 countsByYear W29971678142020 @default.
- W2997167814 countsByYear W29971678142021 @default.
- W2997167814 countsByYear W29971678142022 @default.
- W2997167814 countsByYear W29971678142023 @default.
- W2997167814 crossrefType "journal-article" @default.
- W2997167814 hasAuthorship W2997167814A5045983324 @default.
- W2997167814 hasAuthorship W2997167814A5069897493 @default.
- W2997167814 hasAuthorship W2997167814A5071353144 @default.
- W2997167814 hasConcept C105795698 @default.
- W2997167814 hasConcept C106487976 @default.
- W2997167814 hasConcept C110121322 @default.
- W2997167814 hasConcept C11413529 @default.
- W2997167814 hasConcept C121332964 @default.
- W2997167814 hasConcept C126255220 @default.
- W2997167814 hasConcept C127162648 @default.
- W2997167814 hasConcept C132878287 @default.
- W2997167814 hasConcept C134306372 @default.
- W2997167814 hasConcept C135252773 @default.
- W2997167814 hasConcept C144024400 @default.
- W2997167814 hasConcept C149923435 @default.
- W2997167814 hasConcept C154945302 @default.
- W2997167814 hasConcept C159985019 @default.
- W2997167814 hasConcept C162324750 @default.
- W2997167814 hasConcept C163716315 @default.
- W2997167814 hasConcept C167928553 @default.
- W2997167814 hasConcept C182081679 @default.
- W2997167814 hasConcept C192562407 @default.
- W2997167814 hasConcept C203616005 @default.
- W2997167814 hasConcept C2776214188 @default.
- W2997167814 hasConcept C2777303404 @default.
- W2997167814 hasConcept C28826006 @default.
- W2997167814 hasConcept C2908647359 @default.
- W2997167814 hasConcept C31258907 @default.
- W2997167814 hasConcept C33923547 @default.
- W2997167814 hasConcept C41008148 @default.
- W2997167814 hasConcept C49781872 @default.
- W2997167814 hasConcept C50522688 @default.
- W2997167814 hasConcept C57493831 @default.
- W2997167814 hasConcept C57869625 @default.
- W2997167814 hasConcept C61224824 @default.
- W2997167814 hasConcept C61326573 @default.
- W2997167814 hasConcept C62520636 @default.
- W2997167814 hasConceptScore W2997167814C105795698 @default.
- W2997167814 hasConceptScore W2997167814C106487976 @default.
- W2997167814 hasConceptScore W2997167814C110121322 @default.
- W2997167814 hasConceptScore W2997167814C11413529 @default.
- W2997167814 hasConceptScore W2997167814C121332964 @default.
- W2997167814 hasConceptScore W2997167814C126255220 @default.
- W2997167814 hasConceptScore W2997167814C127162648 @default.
- W2997167814 hasConceptScore W2997167814C132878287 @default.
- W2997167814 hasConceptScore W2997167814C134306372 @default.
- W2997167814 hasConceptScore W2997167814C135252773 @default.
- W2997167814 hasConceptScore W2997167814C144024400 @default.
- W2997167814 hasConceptScore W2997167814C149923435 @default.
- W2997167814 hasConceptScore W2997167814C154945302 @default.
- W2997167814 hasConceptScore W2997167814C159985019 @default.
- W2997167814 hasConceptScore W2997167814C162324750 @default.
- W2997167814 hasConceptScore W2997167814C163716315 @default.