Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997173804> ?p ?o ?g. }
- W2997173804 abstract "Abstract Background Assessing the nucleosome-forming potential of specific DNA sequences is important for understanding complex chromatin organization. Methods for predicting nucleosome positioning include bioinformatics and biophysical approaches. An advantage of bioinformatics methods, which are based on in vivo nucleosome maps, is the use of natural sequences that may contain previously unknown elements involved in nucleosome positioning in vivo . The accuracy of such prediction attempts reflects the genomic coordinate resolution of the nucleosome maps applied. Nucleosome maps are constructed using micrococcal nuclease digestion followed by high-throughput sequencing (MNase-seq). However, as MNase has a strong preference for A/T-rich sequences, MNase-seq may not be appropriate for this purpose. In addition to MNase-seq–based maps, base pair–resolution chemical maps of in vivo nucleosomes from three different species (budding and fission yeasts, and mice) are currently available. However, these chemical maps have yet to be integrated into publicly available computational methods. Results We developed a Bioconductor package (named nuCpos) to demonstrate the superiority of chemical maps in predicting nucleosome positioning. The accuracy of chemical map–based prediction in rotational settings was higher than that of the previously developed MNase-seq–based approach. With our method, predicted nucleosome occupancy reasonably matched in vivo observations and was not affected by A/T nucleotide frequency. Effects of genetic alterations on nucleosome positioning that had been observed in living yeast cells could also be predicted. nuCpos calculates individual histone binding affinity (HBA) scores for given 147-bp sequences to examine their suitability for nucleosome formation. We also established local HBA as a new parameter to predict nucleosome formation, which was calculated for 13 overlapping nucleosomal DNA subsequences. HBA and local HBA scores for various sequences agreed well with previous in vitro and in vivo studies. Furthermore, our results suggest that nucleosomal subsegments that are disfavored in different rotational settings contribute to the defined positioning of nucleosomes. Conclusions Our results demonstrate that chemical map–based statistical models are beneficial for studying nucleosomal DNA features. Studies employing nuCpos software can enhance understanding of chromatin regulation and the interpretation of genetic alterations and facilitate the design of artificial sequences." @default.
- W2997173804 created "2020-01-10" @default.
- W2997173804 creator A5001962229 @default.
- W2997173804 creator A5032267670 @default.
- W2997173804 creator A5081546462 @default.
- W2997173804 date "2019-12-27" @default.
- W2997173804 modified "2023-10-16" @default.
- W2997173804 title "Chemical map–based prediction of nucleosome positioning using the Bioconductor package nuCpos" @default.
- W2997173804 cites W183549353 @default.
- W2997173804 cites W1851625 @default.
- W2997173804 cites W1966361889 @default.
- W2997173804 cites W1973785602 @default.
- W2997173804 cites W1979620025 @default.
- W2997173804 cites W1988997227 @default.
- W2997173804 cites W1992005588 @default.
- W2997173804 cites W2002197756 @default.
- W2997173804 cites W2018475069 @default.
- W2997173804 cites W2057754959 @default.
- W2997173804 cites W2059745208 @default.
- W2997173804 cites W2061111901 @default.
- W2997173804 cites W2065609322 @default.
- W2997173804 cites W2068904622 @default.
- W2997173804 cites W2070219093 @default.
- W2997173804 cites W2081585031 @default.
- W2997173804 cites W2091977789 @default.
- W2997173804 cites W2102674802 @default.
- W2997173804 cites W2107649894 @default.
- W2997173804 cites W2112429774 @default.
- W2997173804 cites W2124618141 @default.
- W2997173804 cites W2125717020 @default.
- W2997173804 cites W2128089277 @default.
- W2997173804 cites W2133306685 @default.
- W2997173804 cites W2135362625 @default.
- W2997173804 cites W2144792857 @default.
- W2997173804 cites W214606598 @default.
- W2997173804 cites W2152114860 @default.
- W2997173804 cites W2156080468 @default.
- W2997173804 cites W2157089275 @default.
- W2997173804 cites W2158177848 @default.
- W2997173804 cites W2158430792 @default.
- W2997173804 cites W2165390431 @default.
- W2997173804 cites W2211823377 @default.
- W2997173804 cites W2227055473 @default.
- W2997173804 cites W2264592275 @default.
- W2997173804 cites W2296073596 @default.
- W2997173804 cites W2343515257 @default.
- W2997173804 cites W2346687813 @default.
- W2997173804 cites W2514281930 @default.
- W2997173804 cites W2521004108 @default.
- W2997173804 cites W2522187359 @default.
- W2997173804 cites W2549283853 @default.
- W2997173804 cites W2553449527 @default.
- W2997173804 cites W2558033160 @default.
- W2997173804 cites W2618569629 @default.
- W2997173804 cites W2742467374 @default.
- W2997173804 cites W2761275051 @default.
- W2997173804 cites W2766631448 @default.
- W2997173804 cites W2795625769 @default.
- W2997173804 cites W2796205786 @default.
- W2997173804 cites W2798234260 @default.
- W2997173804 cites W2905142427 @default.
- W2997173804 cites W2954444558 @default.
- W2997173804 cites W2972564110 @default.
- W2997173804 doi "https://doi.org/10.1101/2019.12.25.888305" @default.
- W2997173804 hasPublicationYear "2019" @default.
- W2997173804 type Work @default.
- W2997173804 sameAs 2997173804 @default.
- W2997173804 citedByCount "3" @default.
- W2997173804 countsByYear W29971738042021 @default.
- W2997173804 countsByYear W29971738042022 @default.
- W2997173804 crossrefType "posted-content" @default.
- W2997173804 hasAuthorship W2997173804A5001962229 @default.
- W2997173804 hasAuthorship W2997173804A5032267670 @default.
- W2997173804 hasAuthorship W2997173804A5081546462 @default.
- W2997173804 hasBestOaLocation W29971738041 @default.
- W2997173804 hasConcept C104317684 @default.
- W2997173804 hasConcept C139024627 @default.
- W2997173804 hasConcept C2779694297 @default.
- W2997173804 hasConcept C54355233 @default.
- W2997173804 hasConcept C552990157 @default.
- W2997173804 hasConcept C64927066 @default.
- W2997173804 hasConcept C70721500 @default.
- W2997173804 hasConcept C83640560 @default.
- W2997173804 hasConcept C84772758 @default.
- W2997173804 hasConcept C86803240 @default.
- W2997173804 hasConceptScore W2997173804C104317684 @default.
- W2997173804 hasConceptScore W2997173804C139024627 @default.
- W2997173804 hasConceptScore W2997173804C2779694297 @default.
- W2997173804 hasConceptScore W2997173804C54355233 @default.
- W2997173804 hasConceptScore W2997173804C552990157 @default.
- W2997173804 hasConceptScore W2997173804C64927066 @default.
- W2997173804 hasConceptScore W2997173804C70721500 @default.
- W2997173804 hasConceptScore W2997173804C83640560 @default.
- W2997173804 hasConceptScore W2997173804C84772758 @default.
- W2997173804 hasConceptScore W2997173804C86803240 @default.
- W2997173804 hasLocation W29971738041 @default.
- W2997173804 hasOpenAccess W2997173804 @default.
- W2997173804 hasPrimaryLocation W29971738041 @default.
- W2997173804 hasRelatedWork W1851625 @default.
- W2997173804 hasRelatedWork W2784838 @default.