Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997183977> ?p ?o ?g. }
- W2997183977 abstract "Abstract Background Cost-sensitive algorithm is an effective strategy to solve imbalanced classification problem. However, the misclassification costs are usually determined empirically based on user expertise, which leads to unstable performance of cost-sensitive classification. Therefore, an efficient and accurate method is needed to calculate the optimal cost weights. Results In this paper, two approaches are proposed to search for the optimal cost weights, targeting at the highest weighted classification accuracy (WCA). One is the optimal cost weights grid searching and the other is the function fitting. Comparisons are made between these between the two algorithms above. In experiments, we classify imbalanced gene expression data using extreme learning machine to test the cost weights obtained by the two approaches. Conclusions Comprehensive experimental results show that the function fitting method is generally more efficient, which can well find the optimal cost weights with acceptable WCA." @default.
- W2997183977 created "2020-01-10" @default.
- W2997183977 creator A5054178885 @default.
- W2997183977 creator A5061001516 @default.
- W2997183977 creator A5061363755 @default.
- W2997183977 creator A5073179339 @default.
- W2997183977 creator A5073752897 @default.
- W2997183977 creator A5083081446 @default.
- W2997183977 date "2019-12-01" @default.
- W2997183977 modified "2023-10-14" @default.
- W2997183977 title "Learning misclassification costs for imbalanced classification on gene expression data" @default.
- W2997183977 cites W1988306022 @default.
- W2997183977 cites W2033710499 @default.
- W2997183977 cites W2038970883 @default.
- W2997183977 cites W2064208261 @default.
- W2997183977 cites W2065176792 @default.
- W2997183977 cites W2078622091 @default.
- W2997183977 cites W2080400869 @default.
- W2997183977 cites W2093551558 @default.
- W2997183977 cites W2094397139 @default.
- W2997183977 cites W2105437322 @default.
- W2997183977 cites W2108704825 @default.
- W2997183977 cites W2109363337 @default.
- W2997183977 cites W2111254559 @default.
- W2997183977 cites W2118886215 @default.
- W2997183977 cites W2119191234 @default.
- W2997183977 cites W2127616922 @default.
- W2997183977 cites W2128985829 @default.
- W2997183977 cites W2137009853 @default.
- W2997183977 cites W2145955247 @default.
- W2997183977 cites W2147339185 @default.
- W2997183977 cites W2294639133 @default.
- W2997183977 cites W2414647798 @default.
- W2997183977 cites W2510208044 @default.
- W2997183977 cites W2513092159 @default.
- W2997183977 cites W2525713298 @default.
- W2997183977 cites W2547985817 @default.
- W2997183977 cites W2548296896 @default.
- W2997183977 cites W2590106682 @default.
- W2997183977 cites W2605977208 @default.
- W2997183977 cites W2807873700 @default.
- W2997183977 cites W68908521 @default.
- W2997183977 cites W728297 @default.
- W2997183977 cites W810908313 @default.
- W2997183977 doi "https://doi.org/10.1186/s12859-019-3255-x" @default.
- W2997183977 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6929277" @default.
- W2997183977 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31874599" @default.
- W2997183977 hasPublicationYear "2019" @default.
- W2997183977 type Work @default.
- W2997183977 sameAs 2997183977 @default.
- W2997183977 citedByCount "16" @default.
- W2997183977 countsByYear W29971839772021 @default.
- W2997183977 countsByYear W29971839772022 @default.
- W2997183977 countsByYear W29971839772023 @default.
- W2997183977 crossrefType "journal-article" @default.
- W2997183977 hasAuthorship W2997183977A5054178885 @default.
- W2997183977 hasAuthorship W2997183977A5061001516 @default.
- W2997183977 hasAuthorship W2997183977A5061363755 @default.
- W2997183977 hasAuthorship W2997183977A5073179339 @default.
- W2997183977 hasAuthorship W2997183977A5073752897 @default.
- W2997183977 hasAuthorship W2997183977A5083081446 @default.
- W2997183977 hasBestOaLocation W29971839771 @default.
- W2997183977 hasConcept C10485038 @default.
- W2997183977 hasConcept C119857082 @default.
- W2997183977 hasConcept C12267149 @default.
- W2997183977 hasConcept C124101348 @default.
- W2997183977 hasConcept C14036430 @default.
- W2997183977 hasConcept C154945302 @default.
- W2997183977 hasConcept C199360897 @default.
- W2997183977 hasConcept C41008148 @default.
- W2997183977 hasConcept C78458016 @default.
- W2997183977 hasConcept C86803240 @default.
- W2997183977 hasConcept C90559484 @default.
- W2997183977 hasConceptScore W2997183977C10485038 @default.
- W2997183977 hasConceptScore W2997183977C119857082 @default.
- W2997183977 hasConceptScore W2997183977C12267149 @default.
- W2997183977 hasConceptScore W2997183977C124101348 @default.
- W2997183977 hasConceptScore W2997183977C14036430 @default.
- W2997183977 hasConceptScore W2997183977C154945302 @default.
- W2997183977 hasConceptScore W2997183977C199360897 @default.
- W2997183977 hasConceptScore W2997183977C41008148 @default.
- W2997183977 hasConceptScore W2997183977C78458016 @default.
- W2997183977 hasConceptScore W2997183977C86803240 @default.
- W2997183977 hasConceptScore W2997183977C90559484 @default.
- W2997183977 hasIssue "S25" @default.
- W2997183977 hasLocation W29971839771 @default.
- W2997183977 hasLocation W29971839772 @default.
- W2997183977 hasLocation W29971839773 @default.
- W2997183977 hasLocation W29971839774 @default.
- W2997183977 hasOpenAccess W2997183977 @default.
- W2997183977 hasPrimaryLocation W29971839771 @default.
- W2997183977 hasRelatedWork W2961085424 @default.
- W2997183977 hasRelatedWork W3199608561 @default.
- W2997183977 hasRelatedWork W4280535922 @default.
- W2997183977 hasRelatedWork W4283697347 @default.
- W2997183977 hasRelatedWork W4286629047 @default.
- W2997183977 hasRelatedWork W4295309597 @default.
- W2997183977 hasRelatedWork W4298144215 @default.
- W2997183977 hasRelatedWork W4306321456 @default.
- W2997183977 hasRelatedWork W4306674287 @default.