Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997184803> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2997184803 endingPage "78" @default.
- W2997184803 startingPage "64" @default.
- W2997184803 abstract "The tendency of talent allocation Shifting from Real to Fictitious” is an important issue faced by the current Chinese economy (Li, et al., 2017; Huang, et al., 2017; Liu, et al., 2018). According to the one-percent national sample census in the year of 2005 and 2015, the average years of education for manufacturing employees were 9.37 years and 10.26 years respectively, with those with junior middle school education accounting for 55.83% and 52.42% respectively. At the same period, the average years of education for those employed in the financial industry are 13.45 years and 14.27 years respectively, and those with higher education account for 55.11% and 69.63% respectively. The existing literature discusses talent allocation mainly from the perspective of government-enterprise (Murphy, et al., 1991; Li and Yin, 2014, 2017; Li and Nan, 2019), but there has been a new change in the allocation of talents in China. In addition to public administration departments (government), financial industry, real estate industry and other virtual economy that generate money with money” are also preferred occupation of the human capital groups, which is exactly the problem that the academic world cannot ignore. Given this background, this paper tries to answer the following questions: Has talent allocation been excessively biased towards the financial industry? If so, how will talent allocation affect Total Factor Productivity (TFP)? Before conducting the empirical regression, we construct a sample theoretical model to demonstrate the nonlinear effect of talent allocation between finance and manufacturing industry on TFP and its mechanism. Then, in the empirical part, we use the one-percent national sample census data and China Industrial Enterprise Database to establish the prefecture-level talent allocation indicator and empirically test the impact of talent allocation on the TFP of enterprises. We find that talent allocation and TFP show an inverted U-shaped relationship on the premise of controlling city and enterprise variables. We calculate the inflection point of talent allocation between financial industry and manufacturing is 1.10. For 283 prefecture-level cities in China, there are 273 cities whose talent allocation has been excessive biased towards the financial industry. And this phenomenon has significantly reduced the TFP of manufacturing. Considering the problem of omitted variables, reverse causality and measurement error of explanatory variables, and using the real estate-manufacturing talent allocation for regression and placebo testing, we find that the main conclusions remain established. If talents are efficiently allocated to manufacturing, Chinese manufacturing TFP can continue to grow by 2.7%, which is economically significant. In addition, heterogeneity analysis shows that there is a significant difference in the impact of over-allocation of talents on the high-tech manufacturing and non-high-tech manufacturing, and the optimal talent allocation of the high-tech manufacturing shifts to the left. This paper may have the following contributions: First, it provides empirical analysis to study the relationship between talent allocation and TFP from a new perspective. Some literature has recognized that talent allocation may be biased towards virtual economy sectors, but all of their analysis is descriptive. Second, it finds that China’s limited human resources are over-biased to the virtual economy sector which is represented by the financial industry. The policy implication is that, to promote real economy, policy-makers should attach great importance to this issue and adjust the manufacturing talent development plan properly." @default.
- W2997184803 created "2020-01-10" @default.
- W2997184803 creator A5061933191 @default.
- W2997184803 creator A5066681392 @default.
- W2997184803 creator A5081036659 @default.
- W2997184803 date "2020-01-01" @default.
- W2997184803 modified "2023-09-28" @default.
- W2997184803 title "Talent Allocation and Total Factor Productivity: With a Discussion on the High-Quality Growth of China’s Real Economy" @default.
- W2997184803 doi "https://doi.org/10.16538/j.cnki.jfe.2020.01.005" @default.
- W2997184803 hasPublicationYear "2020" @default.
- W2997184803 type Work @default.
- W2997184803 sameAs 2997184803 @default.
- W2997184803 citedByCount "0" @default.
- W2997184803 crossrefType "journal-article" @default.
- W2997184803 hasAuthorship W2997184803A5061933191 @default.
- W2997184803 hasAuthorship W2997184803A5066681392 @default.
- W2997184803 hasAuthorship W2997184803A5081036659 @default.
- W2997184803 hasConcept C10138342 @default.
- W2997184803 hasConcept C120009192 @default.
- W2997184803 hasConcept C136264566 @default.
- W2997184803 hasConcept C138885662 @default.
- W2997184803 hasConcept C162324750 @default.
- W2997184803 hasConcept C167562979 @default.
- W2997184803 hasConcept C185592680 @default.
- W2997184803 hasConcept C198531522 @default.
- W2997184803 hasConcept C204983608 @default.
- W2997184803 hasConcept C2776943663 @default.
- W2997184803 hasConcept C2778137410 @default.
- W2997184803 hasConcept C41895202 @default.
- W2997184803 hasConcept C43617362 @default.
- W2997184803 hasConcept C50522688 @default.
- W2997184803 hasConcept C82279013 @default.
- W2997184803 hasConceptScore W2997184803C10138342 @default.
- W2997184803 hasConceptScore W2997184803C120009192 @default.
- W2997184803 hasConceptScore W2997184803C136264566 @default.
- W2997184803 hasConceptScore W2997184803C138885662 @default.
- W2997184803 hasConceptScore W2997184803C162324750 @default.
- W2997184803 hasConceptScore W2997184803C167562979 @default.
- W2997184803 hasConceptScore W2997184803C185592680 @default.
- W2997184803 hasConceptScore W2997184803C198531522 @default.
- W2997184803 hasConceptScore W2997184803C204983608 @default.
- W2997184803 hasConceptScore W2997184803C2776943663 @default.
- W2997184803 hasConceptScore W2997184803C2778137410 @default.
- W2997184803 hasConceptScore W2997184803C41895202 @default.
- W2997184803 hasConceptScore W2997184803C43617362 @default.
- W2997184803 hasConceptScore W2997184803C50522688 @default.
- W2997184803 hasConceptScore W2997184803C82279013 @default.
- W2997184803 hasIssue "01" @default.
- W2997184803 hasLocation W29971848031 @default.
- W2997184803 hasOpenAccess W2997184803 @default.
- W2997184803 hasPrimaryLocation W29971848031 @default.
- W2997184803 hasRelatedWork W1562744506 @default.
- W2997184803 hasRelatedWork W2047404883 @default.
- W2997184803 hasRelatedWork W2176801564 @default.
- W2997184803 hasRelatedWork W2188602109 @default.
- W2997184803 hasRelatedWork W2252279517 @default.
- W2997184803 hasRelatedWork W2259093007 @default.
- W2997184803 hasRelatedWork W2358117955 @default.
- W2997184803 hasRelatedWork W2371482359 @default.
- W2997184803 hasRelatedWork W2394288602 @default.
- W2997184803 hasRelatedWork W2515980973 @default.
- W2997184803 hasRelatedWork W2807903878 @default.
- W2997184803 hasRelatedWork W2889219730 @default.
- W2997184803 hasRelatedWork W2962996807 @default.
- W2997184803 hasRelatedWork W2966865059 @default.
- W2997184803 hasRelatedWork W2992202131 @default.
- W2997184803 hasRelatedWork W3020368336 @default.
- W2997184803 hasRelatedWork W3114663094 @default.
- W2997184803 hasRelatedWork W3125920410 @default.
- W2997184803 hasRelatedWork W3143245294 @default.
- W2997184803 hasRelatedWork W2182980569 @default.
- W2997184803 hasVolume "46" @default.
- W2997184803 isParatext "false" @default.
- W2997184803 isRetracted "false" @default.
- W2997184803 magId "2997184803" @default.
- W2997184803 workType "article" @default.