Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997222009> ?p ?o ?g. }
- W2997222009 endingPage "107444" @default.
- W2997222009 startingPage "107444" @default.
- W2997222009 abstract "Abstract Signal models play a paramount role in compressed sensing magnetic resonance imaging (CSMRI), which aims to accurately recover magnetic resonance (MR) images from highly undersampled measurements. In recent decade, lots of works exploit the sparsity and the low rank for CSMRI. However, there are some defects involving many finely-tuned parameters and pending to further improve the image reconstruction quality. In order to address the above issues, this paper proposes a hybrid regularization by denoising (HRED) constraint, in which we employ the weighting of two types of denoisers such as the BM3D and a fast flexible denoising convolutional neural network (FFDNet). Essentially, the HRED constraint exploits the complementarity of multifarious priors, including the non-local similarity and sparsity induced by BM3D, and the learning deep priors induced by FFDNet. We plug the proposed HRED constraint into CSMRI framework to construct a CSMRI algorithm dubbed HRED-MRI. Concretely, we leverage the HRED constraint to formulate a CSMRI problem, and then tackle the formulated CSMRI problem via the alternating projection implemented by the epigraph method. The epigraph method is equivalent to the gradient descent method whose step sizes are selected in an adaptive manner. Thereinto, epigraph sets of the HRED constraint and the data fidelity term are defined, and the two epigraph sets are all convex. The HRED-MRI relied on the HRED constraint and epigraph method, only has one parameter which needs to be tuned. Compared with the state-of-the-art CSMRI approaches, experiments validate that the HRED-MRI can achieve more excellent image reconstruction performance and better robustness to noise." @default.
- W2997222009 created "2020-01-10" @default.
- W2997222009 creator A5011854667 @default.
- W2997222009 creator A5069826751 @default.
- W2997222009 creator A5079969251 @default.
- W2997222009 creator A5086743235 @default.
- W2997222009 date "2020-05-01" @default.
- W2997222009 modified "2023-10-16" @default.
- W2997222009 title "Compressed sensing MRI based on the hybrid regularization by denoising and the epigraph projection" @default.
- W2997222009 cites W1497452282 @default.
- W2997222009 cites W1537090536 @default.
- W2997222009 cites W1983793191 @default.
- W2997222009 cites W2011710850 @default.
- W2997222009 cites W2018990310 @default.
- W2997222009 cites W2020741214 @default.
- W2997222009 cites W2036257748 @default.
- W2997222009 cites W2038016146 @default.
- W2997222009 cites W2056370875 @default.
- W2997222009 cites W2075065592 @default.
- W2997222009 cites W2093621384 @default.
- W2997222009 cites W2101675075 @default.
- W2997222009 cites W2141168890 @default.
- W2997222009 cites W2145096794 @default.
- W2997222009 cites W2149257626 @default.
- W2997222009 cites W2168668658 @default.
- W2997222009 cites W2189938900 @default.
- W2997222009 cites W2272909541 @default.
- W2997222009 cites W2298616966 @default.
- W2997222009 cites W2304034118 @default.
- W2997222009 cites W2573726823 @default.
- W2997222009 cites W2574952845 @default.
- W2997222009 cites W2604388535 @default.
- W2997222009 cites W2605893139 @default.
- W2997222009 cites W2611467245 @default.
- W2997222009 cites W2735785565 @default.
- W2997222009 cites W2751748841 @default.
- W2997222009 cites W2757509933 @default.
- W2997222009 cites W2778924750 @default.
- W2997222009 cites W2785239769 @default.
- W2997222009 cites W2790449596 @default.
- W2997222009 cites W2791621240 @default.
- W2997222009 cites W2803120452 @default.
- W2997222009 cites W2956625312 @default.
- W2997222009 cites W2963334250 @default.
- W2997222009 cites W2963793388 @default.
- W2997222009 cites W3100730608 @default.
- W2997222009 cites W3104725225 @default.
- W2997222009 cites W4230435307 @default.
- W2997222009 cites W4250955649 @default.
- W2997222009 doi "https://doi.org/10.1016/j.sigpro.2019.107444" @default.
- W2997222009 hasPublicationYear "2020" @default.
- W2997222009 type Work @default.
- W2997222009 sameAs 2997222009 @default.
- W2997222009 citedByCount "5" @default.
- W2997222009 countsByYear W29972220092020 @default.
- W2997222009 countsByYear W29972220092021 @default.
- W2997222009 countsByYear W29972220092022 @default.
- W2997222009 crossrefType "journal-article" @default.
- W2997222009 hasAuthorship W2997222009A5011854667 @default.
- W2997222009 hasAuthorship W2997222009A5069826751 @default.
- W2997222009 hasAuthorship W2997222009A5079969251 @default.
- W2997222009 hasAuthorship W2997222009A5086743235 @default.
- W2997222009 hasConcept C11413529 @default.
- W2997222009 hasConcept C124851039 @default.
- W2997222009 hasConcept C126255220 @default.
- W2997222009 hasConcept C153180895 @default.
- W2997222009 hasConcept C154945302 @default.
- W2997222009 hasConcept C163294075 @default.
- W2997222009 hasConcept C17192189 @default.
- W2997222009 hasConcept C2776135515 @default.
- W2997222009 hasConcept C31972630 @default.
- W2997222009 hasConcept C33923547 @default.
- W2997222009 hasConcept C41008148 @default.
- W2997222009 hasConcept C57493831 @default.
- W2997222009 hasConceptScore W2997222009C11413529 @default.
- W2997222009 hasConceptScore W2997222009C124851039 @default.
- W2997222009 hasConceptScore W2997222009C126255220 @default.
- W2997222009 hasConceptScore W2997222009C153180895 @default.
- W2997222009 hasConceptScore W2997222009C154945302 @default.
- W2997222009 hasConceptScore W2997222009C163294075 @default.
- W2997222009 hasConceptScore W2997222009C17192189 @default.
- W2997222009 hasConceptScore W2997222009C2776135515 @default.
- W2997222009 hasConceptScore W2997222009C31972630 @default.
- W2997222009 hasConceptScore W2997222009C33923547 @default.
- W2997222009 hasConceptScore W2997222009C41008148 @default.
- W2997222009 hasConceptScore W2997222009C57493831 @default.
- W2997222009 hasLocation W29972220091 @default.
- W2997222009 hasOpenAccess W2997222009 @default.
- W2997222009 hasPrimaryLocation W29972220091 @default.
- W2997222009 hasRelatedWork W1585041933 @default.
- W2997222009 hasRelatedWork W2032041146 @default.
- W2997222009 hasRelatedWork W2383285980 @default.
- W2997222009 hasRelatedWork W2406780534 @default.
- W2997222009 hasRelatedWork W2483420468 @default.
- W2997222009 hasRelatedWork W2580030482 @default.
- W2997222009 hasRelatedWork W2806096627 @default.
- W2997222009 hasRelatedWork W2991756295 @default.
- W2997222009 hasRelatedWork W4225259759 @default.