Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997227274> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2997227274 abstract "Text summarization is a massive research area in natural language processing. It reduces the larger text and provided the prime meaning of a text document. Find the meaning of the larger text needed of a proper text analysis which gives a better text summarizer. Abstractive text summarizer gives a summary which can present or not present in the text document. The machine produces a text summary after learning from the human given summary. Sentence similarity is a way to judge a better text summarizer. It is exploring the similarity between sentences or words. This paper we discuss several methods of sentence similarity and proposed a method for identifying a better Bengali abstractive text summarizer. We used human given summary and machine response summary sentences for similarity measurement where both sentences contain a Bengali short text. There are several approaches to English sentences similarity measurement, and we applied some of the approaches for similarity measure for our Bengali text which give a satisfying result. For our given methods we collect data from online and social media and create a summary of those texts. After creating a summary pre-processing this text and generate a summary from our abstractive text summarization model. All summary sentence similarity measurement cases using the method provided an effective value and optimal result." @default.
- W2997227274 created "2020-01-10" @default.
- W2997227274 creator A5032200051 @default.
- W2997227274 creator A5034385435 @default.
- W2997227274 creator A5037244362 @default.
- W2997227274 creator A5055166101 @default.
- W2997227274 creator A5069954640 @default.
- W2997227274 date "2019-07-01" @default.
- W2997227274 modified "2023-09-29" @default.
- W2997227274 title "Sentence Similarity Measurement for Bengali Abstractive Text Summarization" @default.
- W2997227274 cites W2083778364 @default.
- W2997227274 cites W2121184547 @default.
- W2997227274 cites W2895761562 @default.
- W2997227274 cites W2945067664 @default.
- W2997227274 doi "https://doi.org/10.1109/icccnt45670.2019.8944571" @default.
- W2997227274 hasPublicationYear "2019" @default.
- W2997227274 type Work @default.
- W2997227274 sameAs 2997227274 @default.
- W2997227274 citedByCount "5" @default.
- W2997227274 countsByYear W29972272742021 @default.
- W2997227274 countsByYear W29972272742022 @default.
- W2997227274 countsByYear W29972272742023 @default.
- W2997227274 crossrefType "proceedings-article" @default.
- W2997227274 hasAuthorship W2997227274A5032200051 @default.
- W2997227274 hasAuthorship W2997227274A5034385435 @default.
- W2997227274 hasAuthorship W2997227274A5037244362 @default.
- W2997227274 hasAuthorship W2997227274A5055166101 @default.
- W2997227274 hasAuthorship W2997227274A5069954640 @default.
- W2997227274 hasConcept C103278499 @default.
- W2997227274 hasConcept C115961682 @default.
- W2997227274 hasConcept C154945302 @default.
- W2997227274 hasConcept C170858558 @default.
- W2997227274 hasConcept C19235068 @default.
- W2997227274 hasConcept C204321447 @default.
- W2997227274 hasConcept C23123220 @default.
- W2997227274 hasConcept C2777530160 @default.
- W2997227274 hasConcept C41008148 @default.
- W2997227274 hasConceptScore W2997227274C103278499 @default.
- W2997227274 hasConceptScore W2997227274C115961682 @default.
- W2997227274 hasConceptScore W2997227274C154945302 @default.
- W2997227274 hasConceptScore W2997227274C170858558 @default.
- W2997227274 hasConceptScore W2997227274C19235068 @default.
- W2997227274 hasConceptScore W2997227274C204321447 @default.
- W2997227274 hasConceptScore W2997227274C23123220 @default.
- W2997227274 hasConceptScore W2997227274C2777530160 @default.
- W2997227274 hasConceptScore W2997227274C41008148 @default.
- W2997227274 hasLocation W29972272741 @default.
- W2997227274 hasOpenAccess W2997227274 @default.
- W2997227274 hasPrimaryLocation W29972272741 @default.
- W2997227274 hasRelatedWork W1628967614 @default.
- W2997227274 hasRelatedWork W2997227274 @default.
- W2997227274 hasRelatedWork W2997947588 @default.
- W2997227274 hasRelatedWork W3126195334 @default.
- W2997227274 hasRelatedWork W3192589309 @default.
- W2997227274 hasRelatedWork W3204019825 @default.
- W2997227274 hasRelatedWork W4214529784 @default.
- W2997227274 hasRelatedWork W4295954116 @default.
- W2997227274 hasRelatedWork W4297791020 @default.
- W2997227274 hasRelatedWork W4297817541 @default.
- W2997227274 isParatext "false" @default.
- W2997227274 isRetracted "false" @default.
- W2997227274 magId "2997227274" @default.
- W2997227274 workType "article" @default.