Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997231012> ?p ?o ?g. }
- W2997231012 endingPage "54" @default.
- W2997231012 startingPage "1" @default.
- W2997231012 abstract "According to the Circle Packing Theorem, any triangulation of the Riemann sphere can be realized as a nerve of a circle packing. Reflections in the dual circles generate a Kleinian group <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=application/x-tex>H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> whose limit set is a generalized Apollonian gasket <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Lamda Subscript upper H> <mml:semantics> <mml:msub> <mml:mi mathvariant=normal>Λ<!-- Λ --></mml:mi> <mml:mi>H</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>Lambda _H</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We design a surgery that relates <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=application/x-tex>H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to a rational map <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=g> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding=application/x-tex>g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> whose Julia set <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper J Subscript g> <mml:semantics> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>J</mml:mi> </mml:mrow> <mml:mi>g</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>mathcal {J}_g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is (non-quasiconformally) homeomorphic to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Lamda Subscript upper H> <mml:semantics> <mml:msub> <mml:mi mathvariant=normal>Λ<!-- Λ --></mml:mi> <mml:mi>H</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>Lambda _H</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show for a large class of triangulations, however, the groups of quasisymmetries of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Lamda Subscript upper H> <mml:semantics> <mml:msub> <mml:mi mathvariant=normal>Λ<!-- Λ --></mml:mi> <mml:mi>H</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>Lambda _H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper J Subscript g> <mml:semantics> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>J</mml:mi> </mml:mrow> <mml:mi>g</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>mathcal {J}_g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are isomorphic and coincide with the corresponding groups of self-homeomorphisms. Moreover, in the case of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=application/x-tex>H</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, this group is equal to the group of Möbius symmetries of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Lamda Subscript upper H> <mml:semantics> <mml:msub> <mml:mi mathvariant=normal>Λ<!-- Λ --></mml:mi> <mml:mi>H</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>Lambda _H</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which is the semi-direct product of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=application/x-tex>H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> itself and the group of Möbius symmetries of the underlying circle packing. In the case of the tetrahedral triangulation (when <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Lamda Subscript upper H> <mml:semantics> <mml:msub> <mml:mi mathvariant=normal>Λ<!-- Λ --></mml:mi> <mml:mi>H</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>Lambda _H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the classical Apollonian gasket), we give a quasiregular model for the above actions which is quasiconformally equivalent to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=g> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding=application/x-tex>g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and produces <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=application/x-tex>H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by a David surgery. We also construct a mating between the group and the map coexisting in the same dynamical plane and show that it can be generated by Schwarz reflections in the deltoid and the inscribed circle." @default.
- W2997231012 created "2020-01-10" @default.
- W2997231012 creator A5015046446 @default.
- W2997231012 creator A5055690250 @default.
- W2997231012 creator A5060085655 @default.
- W2997231012 creator A5084265513 @default.
- W2997231012 date "2023-02-01" @default.
- W2997231012 modified "2023-10-10" @default.
- W2997231012 title "On dynamical gaskets generated by rational maps, Kleinian groups, and Schwarz reflections" @default.
- W2997231012 cites W1523004878 @default.
- W2997231012 cites W1968041289 @default.
- W2997231012 cites W1970531633 @default.
- W2997231012 cites W1971021509 @default.
- W2997231012 cites W1977887896 @default.
- W2997231012 cites W1983451189 @default.
- W2997231012 cites W2004575946 @default.
- W2997231012 cites W2033096135 @default.
- W2997231012 cites W2035195290 @default.
- W2997231012 cites W2043389026 @default.
- W2997231012 cites W2047959295 @default.
- W2997231012 cites W2055887599 @default.
- W2997231012 cites W2070151264 @default.
- W2997231012 cites W2070713676 @default.
- W2997231012 cites W2079379422 @default.
- W2997231012 cites W2102863145 @default.
- W2997231012 cites W2109825634 @default.
- W2997231012 cites W2158072338 @default.
- W2997231012 cites W2162022211 @default.
- W2997231012 cites W2313644720 @default.
- W2997231012 cites W2332342831 @default.
- W2997231012 cites W2529885880 @default.
- W2997231012 cites W2562380252 @default.
- W2997231012 cites W2962677138 @default.
- W2997231012 cites W2962732259 @default.
- W2997231012 cites W2962757435 @default.
- W2997231012 cites W2962891993 @default.
- W2997231012 cites W2963115752 @default.
- W2997231012 cites W2963226030 @default.
- W2997231012 cites W2963276793 @default.
- W2997231012 cites W2963901072 @default.
- W2997231012 cites W2963903642 @default.
- W2997231012 cites W2964239357 @default.
- W2997231012 cites W3038490349 @default.
- W2997231012 cites W3100768964 @default.
- W2997231012 cites W3106092979 @default.
- W2997231012 cites W4210570675 @default.
- W2997231012 cites W4233380864 @default.
- W2997231012 cites W4235315955 @default.
- W2997231012 cites W4235932604 @default.
- W2997231012 cites W4252700585 @default.
- W2997231012 cites W4254341973 @default.
- W2997231012 cites W67635905 @default.
- W2997231012 cites W79788843 @default.
- W2997231012 doi "https://doi.org/10.1090/ecgd/379" @default.
- W2997231012 hasPublicationYear "2023" @default.
- W2997231012 type Work @default.
- W2997231012 sameAs 2997231012 @default.
- W2997231012 citedByCount "3" @default.
- W2997231012 countsByYear W29972310122020 @default.
- W2997231012 crossrefType "journal-article" @default.
- W2997231012 hasAuthorship W2997231012A5015046446 @default.
- W2997231012 hasAuthorship W2997231012A5055690250 @default.
- W2997231012 hasAuthorship W2997231012A5060085655 @default.
- W2997231012 hasAuthorship W2997231012A5084265513 @default.
- W2997231012 hasBestOaLocation W29972310121 @default.
- W2997231012 hasConcept C11413529 @default.
- W2997231012 hasConcept C154945302 @default.
- W2997231012 hasConcept C18903297 @default.
- W2997231012 hasConcept C2776321320 @default.
- W2997231012 hasConcept C2777299769 @default.
- W2997231012 hasConcept C41008148 @default.
- W2997231012 hasConcept C86803240 @default.
- W2997231012 hasConceptScore W2997231012C11413529 @default.
- W2997231012 hasConceptScore W2997231012C154945302 @default.
- W2997231012 hasConceptScore W2997231012C18903297 @default.
- W2997231012 hasConceptScore W2997231012C2776321320 @default.
- W2997231012 hasConceptScore W2997231012C2777299769 @default.
- W2997231012 hasConceptScore W2997231012C41008148 @default.
- W2997231012 hasConceptScore W2997231012C86803240 @default.
- W2997231012 hasIssue "1" @default.
- W2997231012 hasLocation W29972310121 @default.
- W2997231012 hasLocation W29972310122 @default.
- W2997231012 hasOpenAccess W2997231012 @default.
- W2997231012 hasPrimaryLocation W29972310121 @default.
- W2997231012 hasRelatedWork W1490908374 @default.
- W2997231012 hasRelatedWork W151193258 @default.
- W2997231012 hasRelatedWork W1529400504 @default.
- W2997231012 hasRelatedWork W1549203972 @default.
- W2997231012 hasRelatedWork W1607472309 @default.
- W2997231012 hasRelatedWork W1871911958 @default.
- W2997231012 hasRelatedWork W1892467659 @default.
- W2997231012 hasRelatedWork W2808586768 @default.
- W2997231012 hasRelatedWork W2998403542 @default.
- W2997231012 hasRelatedWork W38394648 @default.
- W2997231012 hasVolume "27" @default.
- W2997231012 isParatext "false" @default.
- W2997231012 isRetracted "false" @default.
- W2997231012 magId "2997231012" @default.