Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997241746> ?p ?o ?g. }
- W2997241746 endingPage "302" @default.
- W2997241746 startingPage "302" @default.
- W2997241746 abstract "With the rapid development of the Internet of Things (IoT), autonomous vehicles have been receiving more and more attention because they own many advantages compared with traditional vehicles. A robust and accurate vehicle localization system is critical to the safety and the efficiency of autonomous vehicles. The global positioning system (GPS) has been widely applied to the vehicle localization systems. However, the accuracy and the reliability of GPS have suffered in some scenarios. In this paper, we present a robust and accurate vehicle localization system consisting of a bistatic passive radar, in which the performance of localization is solely dependent on the accuracy of the proposed off-grid direction of arrival (DOA) estimation algorithm. Under the framework of sparse Bayesian learning (SBL), the source powers and the noise variance are estimated by a fast evidence maximization method, and the off-grid gap is effectively handled by an advanced grid refining strategy. Simulation results show that the proposed method exhibits better performance than the existing sparse signal representation-based algorithms, and performs well in the vehicle localization system." @default.
- W2997241746 created "2020-01-10" @default.
- W2997241746 creator A5022545380 @default.
- W2997241746 creator A5038947417 @default.
- W2997241746 creator A5040463326 @default.
- W2997241746 creator A5047419048 @default.
- W2997241746 creator A5053386816 @default.
- W2997241746 date "2020-01-05" @default.
- W2997241746 modified "2023-09-30" @default.
- W2997241746 title "Robust Sparse Bayesian Learning-Based Off-Grid DOA Estimation Method for Vehicle Localization" @default.
- W2997241746 cites W1961971406 @default.
- W2997241746 cites W1979018848 @default.
- W2997241746 cites W1999933558 @default.
- W2997241746 cites W2003113842 @default.
- W2997241746 cites W2017358384 @default.
- W2997241746 cites W2023968634 @default.
- W2997241746 cites W2028823365 @default.
- W2997241746 cites W2103519107 @default.
- W2997241746 cites W2113638573 @default.
- W2997241746 cites W2113660769 @default.
- W2997241746 cites W2115141757 @default.
- W2997241746 cites W2144524571 @default.
- W2997241746 cites W2152279006 @default.
- W2997241746 cites W2294649896 @default.
- W2997241746 cites W2513373031 @default.
- W2997241746 cites W2526498414 @default.
- W2997241746 cites W2527403758 @default.
- W2997241746 cites W2559897227 @default.
- W2997241746 cites W2591915039 @default.
- W2997241746 cites W2605565881 @default.
- W2997241746 cites W2607740018 @default.
- W2997241746 cites W2609056916 @default.
- W2997241746 cites W2615863827 @default.
- W2997241746 cites W2616555170 @default.
- W2997241746 cites W2618008015 @default.
- W2997241746 cites W2742835528 @default.
- W2997241746 cites W2763636788 @default.
- W2997241746 cites W2791639158 @default.
- W2997241746 cites W2796906318 @default.
- W2997241746 cites W2797475427 @default.
- W2997241746 cites W2889114103 @default.
- W2997241746 cites W2890717664 @default.
- W2997241746 cites W2891224819 @default.
- W2997241746 cites W2892100170 @default.
- W2997241746 cites W2892433162 @default.
- W2997241746 cites W2893104611 @default.
- W2997241746 cites W2893163261 @default.
- W2997241746 cites W2894245906 @default.
- W2997241746 cites W2898431163 @default.
- W2997241746 cites W2909322480 @default.
- W2997241746 cites W2911546748 @default.
- W2997241746 cites W2915441070 @default.
- W2997241746 cites W2921038745 @default.
- W2997241746 cites W2921062571 @default.
- W2997241746 cites W2946036691 @default.
- W2997241746 cites W2946966373 @default.
- W2997241746 cites W2947949370 @default.
- W2997241746 cites W2956303394 @default.
- W2997241746 cites W2963258211 @default.
- W2997241746 cites W2973498398 @default.
- W2997241746 cites W2981972786 @default.
- W2997241746 cites W3098352114 @default.
- W2997241746 cites W3103250346 @default.
- W2997241746 cites W4231805926 @default.
- W2997241746 doi "https://doi.org/10.3390/s20010302" @default.
- W2997241746 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6982840" @default.
- W2997241746 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31948087" @default.
- W2997241746 hasPublicationYear "2020" @default.
- W2997241746 type Work @default.
- W2997241746 sameAs 2997241746 @default.
- W2997241746 citedByCount "6" @default.
- W2997241746 countsByYear W29972417462020 @default.
- W2997241746 countsByYear W29972417462021 @default.
- W2997241746 countsByYear W29972417462023 @default.
- W2997241746 crossrefType "journal-article" @default.
- W2997241746 hasAuthorship W2997241746A5022545380 @default.
- W2997241746 hasAuthorship W2997241746A5038947417 @default.
- W2997241746 hasAuthorship W2997241746A5040463326 @default.
- W2997241746 hasAuthorship W2997241746A5047419048 @default.
- W2997241746 hasAuthorship W2997241746A5053386816 @default.
- W2997241746 hasBestOaLocation W29972417461 @default.
- W2997241746 hasConcept C115961682 @default.
- W2997241746 hasConcept C121332964 @default.
- W2997241746 hasConcept C126255220 @default.
- W2997241746 hasConcept C12957241 @default.
- W2997241746 hasConcept C154945302 @default.
- W2997241746 hasConcept C163258240 @default.
- W2997241746 hasConcept C187691185 @default.
- W2997241746 hasConcept C198613851 @default.
- W2997241746 hasConcept C2524010 @default.
- W2997241746 hasConcept C2776330181 @default.
- W2997241746 hasConcept C33923547 @default.
- W2997241746 hasConcept C41008148 @default.
- W2997241746 hasConcept C43214815 @default.
- W2997241746 hasConcept C554190296 @default.
- W2997241746 hasConcept C60229501 @default.
- W2997241746 hasConcept C62520636 @default.
- W2997241746 hasConcept C76155785 @default.