Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997262806> ?p ?o ?g. }
- W2997262806 endingPage "32" @default.
- W2997262806 startingPage "1" @default.
- W2997262806 abstract "Power side-channel attacks, capable of deducing secret data using statistical analysis, have become a serious threat. Random masking is a widely used countermeasure for removing the statistical dependence between secret data and side-channel information. Although there are techniques for verifying whether a piece of software code is perfectly masked, they are limited in accuracy and scalability. To bridge this gap, we propose a refinement-based method for verifying masking countermeasures. Our method is more accurate than prior type-inference-based approaches and more scalable than prior model-counting-based approaches using SAT or SMT solvers. Indeed, our method can be viewed as a gradual refinement of a set of type-inference rules for reasoning about distribution types. These rules are kept abstract initially to allow fast deduction and then made concrete when the abstract version is not able to resolve the verification problem. We also propose algorithms for quantifying the amount of side-channel information leakage from a software implementation using the notion of quantitative masking strength. We have implemented our method in a software tool and evaluated it on cryptographic benchmarks including AES and MAC-Keccak. The experimental results show that our method significantly outperforms state-of-the-art techniques in terms of accuracy and scalability." @default.
- W2997262806 created "2020-01-10" @default.
- W2997262806 creator A5027425633 @default.
- W2997262806 creator A5055838753 @default.
- W2997262806 creator A5071672663 @default.
- W2997262806 creator A5076850997 @default.
- W2997262806 date "2019-07-18" @default.
- W2997262806 modified "2023-10-01" @default.
- W2997262806 title "Verifying and Quantifying Side-channel Resistance of Masked Software Implementations" @default.
- W2997262806 cites W1023119160 @default.
- W2997262806 cites W116061528 @default.
- W2997262806 cites W125899002 @default.
- W2997262806 cites W130371449 @default.
- W2997262806 cites W147129824 @default.
- W2997262806 cites W150190951 @default.
- W2997262806 cites W1506890909 @default.
- W2997262806 cites W1562362230 @default.
- W2997262806 cites W1598102953 @default.
- W2997262806 cites W191000419 @default.
- W2997262806 cites W2017609955 @default.
- W2997262806 cites W2033856124 @default.
- W2997262806 cites W2049389441 @default.
- W2997262806 cites W2068758543 @default.
- W2997262806 cites W2072550684 @default.
- W2997262806 cites W2115595690 @default.
- W2997262806 cites W2116207513 @default.
- W2997262806 cites W2117290716 @default.
- W2997262806 cites W2127992996 @default.
- W2997262806 cites W2129740858 @default.
- W2997262806 cites W2132218308 @default.
- W2997262806 cites W2143744897 @default.
- W2997262806 cites W2155861318 @default.
- W2997262806 cites W2204772115 @default.
- W2997262806 cites W2219812381 @default.
- W2997262806 cites W2343729057 @default.
- W2997262806 cites W2488210329 @default.
- W2997262806 cites W2515614845 @default.
- W2997262806 cites W2536698892 @default.
- W2997262806 cites W2538823313 @default.
- W2997262806 cites W2546922927 @default.
- W2997262806 cites W2560526931 @default.
- W2997262806 cites W2620701188 @default.
- W2997262806 cites W2626217303 @default.
- W2997262806 cites W2758227629 @default.
- W2997262806 cites W2766853874 @default.
- W2997262806 cites W2780206242 @default.
- W2997262806 cites W2795147945 @default.
- W2997262806 cites W2795180100 @default.
- W2997262806 cites W2809301752 @default.
- W2997262806 cites W2858117630 @default.
- W2997262806 cites W2883707793 @default.
- W2997262806 cites W2910752585 @default.
- W2997262806 cites W2963047853 @default.
- W2997262806 cites W2964177714 @default.
- W2997262806 cites W587262091 @default.
- W2997262806 cites W72918221 @default.
- W2997262806 doi "https://doi.org/10.1145/3330392" @default.
- W2997262806 hasPublicationYear "2019" @default.
- W2997262806 type Work @default.
- W2997262806 sameAs 2997262806 @default.
- W2997262806 citedByCount "20" @default.
- W2997262806 countsByYear W29972628062018 @default.
- W2997262806 countsByYear W29972628062019 @default.
- W2997262806 countsByYear W29972628062020 @default.
- W2997262806 countsByYear W29972628062021 @default.
- W2997262806 countsByYear W29972628062022 @default.
- W2997262806 countsByYear W29972628062023 @default.
- W2997262806 crossrefType "journal-article" @default.
- W2997262806 hasAuthorship W2997262806A5027425633 @default.
- W2997262806 hasAuthorship W2997262806A5055838753 @default.
- W2997262806 hasAuthorship W2997262806A5071672663 @default.
- W2997262806 hasAuthorship W2997262806A5076850997 @default.
- W2997262806 hasConcept C113775141 @default.
- W2997262806 hasConcept C11413529 @default.
- W2997262806 hasConcept C124101348 @default.
- W2997262806 hasConcept C142362112 @default.
- W2997262806 hasConcept C153349607 @default.
- W2997262806 hasConcept C154945302 @default.
- W2997262806 hasConcept C177264268 @default.
- W2997262806 hasConcept C178489894 @default.
- W2997262806 hasConcept C199360897 @default.
- W2997262806 hasConcept C2776214188 @default.
- W2997262806 hasConcept C2777402240 @default.
- W2997262806 hasConcept C2777904410 @default.
- W2997262806 hasConcept C41008148 @default.
- W2997262806 hasConcept C48044578 @default.
- W2997262806 hasConcept C49289754 @default.
- W2997262806 hasConcept C71743495 @default.
- W2997262806 hasConcept C77088390 @default.
- W2997262806 hasConcept C80444323 @default.
- W2997262806 hasConceptScore W2997262806C113775141 @default.
- W2997262806 hasConceptScore W2997262806C11413529 @default.
- W2997262806 hasConceptScore W2997262806C124101348 @default.
- W2997262806 hasConceptScore W2997262806C142362112 @default.
- W2997262806 hasConceptScore W2997262806C153349607 @default.
- W2997262806 hasConceptScore W2997262806C154945302 @default.
- W2997262806 hasConceptScore W2997262806C177264268 @default.
- W2997262806 hasConceptScore W2997262806C178489894 @default.