Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997264365> ?p ?o ?g. }
- W2997264365 endingPage "117242" @default.
- W2997264365 startingPage "117242" @default.
- W2997264365 abstract "Estimation of hourly and continuous ground-level fine particulate matter (PM2.5) concentrations is essential for PM2.5 pollution sources identifications, targeted policy development and population exposure research. However, current PM2.5 estimation studies rely heavily on satellite-based aerosol optical depth (AOD) data, and the limited transit times of polar-orbiting satellites such as Terra and Aqua, nighttime gaps in data from geostationary satellites such as Himawari-8, and cloud contamination reported for both types of satellites challenge the estimation of spatiotemporally continuous PM2.5 concentrations. In this study, spatiotemporal PM2.5 characteristic was constructed by the spatiotemporal fusion method. Specifically, multi-source data, including spatiotemporal, periodic, meteorological, vegetation, anthropogenic and topological characteristics, were incorporated into an ensemble learning method that combined extreme gradient boosting (XGBoost), k-nearest neighbour (KNN) and back-propagation neural network (BPNN) algorithms in level 1 and used linear regression (LR) for integration in level 2. The optimized stacking strategy that considered PM2.5 spatiotemporal autocorrelation was called the ST-stacking model. The model was trained, validated and tested with data acquired for China in 2017. The ST-stacking model outperformed XGBoost, KNN and BPNN models by 9.27% on average, with an R2 = 0.9191. Using the model, the 24-h and continuous ground-level PM2.5 concentrations in mainland China on 11 May 2017 were mapped, and parts of Beijing and Chengdu were selected for more detailed analysis. The PM2.5 concentrations in Taklimakan Desert, North China Plain, Sichuan Basin and Yangtze Plain were much higher than those in other locations on this day, which was generally consistent with the long-term patterns reported in previous studies." @default.
- W2997264365 created "2020-01-10" @default.
- W2997264365 creator A5014721639 @default.
- W2997264365 creator A5041093991 @default.
- W2997264365 creator A5041816822 @default.
- W2997264365 creator A5061527815 @default.
- W2997264365 date "2020-02-01" @default.
- W2997264365 modified "2023-10-18" @default.
- W2997264365 title "Estimating hourly and continuous ground-level PM2.5 concentrations using an ensemble learning algorithm: The ST-stacking model" @default.
- W2997264365 cites W1173523477 @default.
- W2997264365 cites W1180655949 @default.
- W2997264365 cites W1238277142 @default.
- W2997264365 cites W1897316556 @default.
- W2997264365 cites W1971794754 @default.
- W2997264365 cites W1972800132 @default.
- W2997264365 cites W2010026170 @default.
- W2997264365 cites W2031528200 @default.
- W2997264365 cites W2034446988 @default.
- W2997264365 cites W2047607205 @default.
- W2997264365 cites W2054806977 @default.
- W2997264365 cites W2098294355 @default.
- W2997264365 cites W2116658750 @default.
- W2997264365 cites W2306844409 @default.
- W2997264365 cites W2312444500 @default.
- W2997264365 cites W2316167246 @default.
- W2997264365 cites W2323483937 @default.
- W2997264365 cites W2516758599 @default.
- W2997264365 cites W2523682462 @default.
- W2997264365 cites W2559999825 @default.
- W2997264365 cites W2564032601 @default.
- W2997264365 cites W2566321408 @default.
- W2997264365 cites W2581321420 @default.
- W2997264365 cites W2588978790 @default.
- W2997264365 cites W2617655798 @default.
- W2997264365 cites W2623398931 @default.
- W2997264365 cites W2686172063 @default.
- W2997264365 cites W2753268274 @default.
- W2997264365 cites W2756715233 @default.
- W2997264365 cites W2766329946 @default.
- W2997264365 cites W2776069591 @default.
- W2997264365 cites W2784049326 @default.
- W2997264365 cites W2792986592 @default.
- W2997264365 cites W2793935423 @default.
- W2997264365 cites W2800616934 @default.
- W2997264365 cites W28412257 @default.
- W2997264365 cites W2898616442 @default.
- W2997264365 cites W2899077686 @default.
- W2997264365 cites W2902003317 @default.
- W2997264365 cites W2910630817 @default.
- W2997264365 cites W2914569347 @default.
- W2997264365 cites W3122817556 @default.
- W2997264365 doi "https://doi.org/10.1016/j.atmosenv.2019.117242" @default.
- W2997264365 hasPublicationYear "2020" @default.
- W2997264365 type Work @default.
- W2997264365 sameAs 2997264365 @default.
- W2997264365 citedByCount "40" @default.
- W2997264365 countsByYear W29972643652020 @default.
- W2997264365 countsByYear W29972643652021 @default.
- W2997264365 countsByYear W29972643652022 @default.
- W2997264365 countsByYear W29972643652023 @default.
- W2997264365 crossrefType "journal-article" @default.
- W2997264365 hasAuthorship W2997264365A5014721639 @default.
- W2997264365 hasAuthorship W2997264365A5041093991 @default.
- W2997264365 hasAuthorship W2997264365A5041816822 @default.
- W2997264365 hasAuthorship W2997264365A5061527815 @default.
- W2997264365 hasConcept C127413603 @default.
- W2997264365 hasConcept C146978453 @default.
- W2997264365 hasConcept C153294291 @default.
- W2997264365 hasConcept C16405173 @default.
- W2997264365 hasConcept C19269812 @default.
- W2997264365 hasConcept C205649164 @default.
- W2997264365 hasConcept C39432304 @default.
- W2997264365 hasConcept C62649853 @default.
- W2997264365 hasConceptScore W2997264365C127413603 @default.
- W2997264365 hasConceptScore W2997264365C146978453 @default.
- W2997264365 hasConceptScore W2997264365C153294291 @default.
- W2997264365 hasConceptScore W2997264365C16405173 @default.
- W2997264365 hasConceptScore W2997264365C19269812 @default.
- W2997264365 hasConceptScore W2997264365C205649164 @default.
- W2997264365 hasConceptScore W2997264365C39432304 @default.
- W2997264365 hasConceptScore W2997264365C62649853 @default.
- W2997264365 hasFunder F4320321001 @default.
- W2997264365 hasFunder F4320335777 @default.
- W2997264365 hasLocation W29972643651 @default.
- W2997264365 hasOpenAccess W2997264365 @default.
- W2997264365 hasPrimaryLocation W29972643651 @default.
- W2997264365 hasRelatedWork W1246568850 @default.
- W2997264365 hasRelatedWork W2020667207 @default.
- W2997264365 hasRelatedWork W2024862785 @default.
- W2997264365 hasRelatedWork W2106037225 @default.
- W2997264365 hasRelatedWork W2172995526 @default.
- W2997264365 hasRelatedWork W2370844195 @default.
- W2997264365 hasRelatedWork W2902501997 @default.
- W2997264365 hasRelatedWork W2921762313 @default.
- W2997264365 hasRelatedWork W3176964402 @default.
- W2997264365 hasRelatedWork W2103167184 @default.
- W2997264365 hasVolume "223" @default.
- W2997264365 isParatext "false" @default.