Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997272341> ?p ?o ?g. }
- W2997272341 endingPage "3915" @default.
- W2997272341 startingPage "3906" @default.
- W2997272341 abstract "This article presents a fast and latent low-rank subspace clustering (FLLRSC) method to select hyperspectral bands. The FLLRSC assumes that all the bands are sampled from a union of latent low-rank independent subspaces and formulates the self-representation property of all bands into a latent low-rank representation (LLRR) model. The assumption ensures sufficient sampling bands in representing low-rank subspaces of all bands and improves robustness to noise. The FLLRSC first implements the Hadamard random projections to reduce spatial dimensionality and lower the computational cost. It then adopts the inexact augmented Lagrange multiplier algorithm to optimize the LLRR program and estimates sparse coefficients of all the projected bands. After that, it employs a correntropy metric to measure the similarity between pairwise bands and constructs an affinity matrix based on sparse representation. The correntropy metric could better describe the nonlinear characteristics of hyperspectral bands and enhance the block-diagonal structure of the similarity matrix for correctly clustering all subspaces. The FLLRSC conducts spectral clustering on the connected graph denoted by the affinity matrix. The bands that are closest to their separate cluster centroids form the final band subset. Experimental results on three widely used hyperspectral data sets show that the FLLRSC performs better than the classical low-rank representation methods with higher classification accuracy at a low computational cost." @default.
- W2997272341 created "2020-01-10" @default.
- W2997272341 creator A5033017179 @default.
- W2997272341 creator A5036030486 @default.
- W2997272341 creator A5050009113 @default.
- W2997272341 creator A5074018705 @default.
- W2997272341 date "2020-06-01" @default.
- W2997272341 modified "2023-10-18" @default.
- W2997272341 title "Fast and Latent Low-Rank Subspace Clustering for Hyperspectral Band Selection" @default.
- W2997272341 cites W1932531222 @default.
- W2997272341 cites W2012255037 @default.
- W2997272341 cites W2028711756 @default.
- W2997272341 cites W2045786596 @default.
- W2997272341 cites W2046098657 @default.
- W2997272341 cites W2071821878 @default.
- W2997272341 cites W2073786624 @default.
- W2997272341 cites W2078491260 @default.
- W2997272341 cites W2088657558 @default.
- W2997272341 cites W2088891335 @default.
- W2997272341 cites W2109836508 @default.
- W2997272341 cites W2123340494 @default.
- W2997272341 cites W2129905273 @default.
- W2997272341 cites W2132914434 @default.
- W2997272341 cites W2145152441 @default.
- W2997272341 cites W2150566919 @default.
- W2997272341 cites W2150990614 @default.
- W2997272341 cites W2152786555 @default.
- W2997272341 cites W2301818495 @default.
- W2997272341 cites W2315258102 @default.
- W2997272341 cites W2316226477 @default.
- W2997272341 cites W2340318445 @default.
- W2997272341 cites W2471210720 @default.
- W2997272341 cites W2482912082 @default.
- W2997272341 cites W2514028694 @default.
- W2997272341 cites W2530006000 @default.
- W2997272341 cites W2570107765 @default.
- W2997272341 cites W2602548474 @default.
- W2997272341 cites W2603834682 @default.
- W2997272341 cites W2607476064 @default.
- W2997272341 cites W2618225899 @default.
- W2997272341 cites W2743255627 @default.
- W2997272341 cites W2747189523 @default.
- W2997272341 cites W2753248899 @default.
- W2997272341 cites W2753309326 @default.
- W2997272341 cites W2789249105 @default.
- W2997272341 cites W2793357412 @default.
- W2997272341 cites W2950325582 @default.
- W2997272341 cites W2953423780 @default.
- W2997272341 cites W3105100264 @default.
- W2997272341 doi "https://doi.org/10.1109/tgrs.2019.2959342" @default.
- W2997272341 hasPublicationYear "2020" @default.
- W2997272341 type Work @default.
- W2997272341 sameAs 2997272341 @default.
- W2997272341 citedByCount "67" @default.
- W2997272341 countsByYear W29972723412020 @default.
- W2997272341 countsByYear W29972723412021 @default.
- W2997272341 countsByYear W29972723412022 @default.
- W2997272341 countsByYear W29972723412023 @default.
- W2997272341 crossrefType "journal-article" @default.
- W2997272341 hasAuthorship W2997272341A5033017179 @default.
- W2997272341 hasAuthorship W2997272341A5036030486 @default.
- W2997272341 hasAuthorship W2997272341A5050009113 @default.
- W2997272341 hasAuthorship W2997272341A5074018705 @default.
- W2997272341 hasConcept C104317684 @default.
- W2997272341 hasConcept C105611402 @default.
- W2997272341 hasConcept C11413529 @default.
- W2997272341 hasConcept C114614502 @default.
- W2997272341 hasConcept C12362212 @default.
- W2997272341 hasConcept C153180895 @default.
- W2997272341 hasConcept C154945302 @default.
- W2997272341 hasConcept C159078339 @default.
- W2997272341 hasConcept C164226766 @default.
- W2997272341 hasConcept C185592680 @default.
- W2997272341 hasConcept C2524010 @default.
- W2997272341 hasConcept C32834561 @default.
- W2997272341 hasConcept C33923547 @default.
- W2997272341 hasConcept C41008148 @default.
- W2997272341 hasConcept C55493867 @default.
- W2997272341 hasConcept C63479239 @default.
- W2997272341 hasConcept C70518039 @default.
- W2997272341 hasConcept C73555534 @default.
- W2997272341 hasConceptScore W2997272341C104317684 @default.
- W2997272341 hasConceptScore W2997272341C105611402 @default.
- W2997272341 hasConceptScore W2997272341C11413529 @default.
- W2997272341 hasConceptScore W2997272341C114614502 @default.
- W2997272341 hasConceptScore W2997272341C12362212 @default.
- W2997272341 hasConceptScore W2997272341C153180895 @default.
- W2997272341 hasConceptScore W2997272341C154945302 @default.
- W2997272341 hasConceptScore W2997272341C159078339 @default.
- W2997272341 hasConceptScore W2997272341C164226766 @default.
- W2997272341 hasConceptScore W2997272341C185592680 @default.
- W2997272341 hasConceptScore W2997272341C2524010 @default.
- W2997272341 hasConceptScore W2997272341C32834561 @default.
- W2997272341 hasConceptScore W2997272341C33923547 @default.
- W2997272341 hasConceptScore W2997272341C41008148 @default.
- W2997272341 hasConceptScore W2997272341C55493867 @default.
- W2997272341 hasConceptScore W2997272341C63479239 @default.
- W2997272341 hasConceptScore W2997272341C70518039 @default.