Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997276186> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2997276186 endingPage "151" @default.
- W2997276186 startingPage "133" @default.
- W2997276186 abstract "Purpose The purpose of this paper is to solve the problem of information privacy and security of social users. Mobile internet and social network are more and more deeply integrated into people’s daily life, especially under the interaction of the fierce development momentum of the Internet of Things and diversified personalized services, more and more private information of social users is exposed to the network environment actively or unintentionally. In addition, a large amount of social network data not only brings more benefits to network application providers, but also provides motivation for malicious attackers. Therefore, under the social network environment, the research on the privacy protection of user information has great theoretical and practical significance. Design/methodology/approach In this study, based on the social network analysis, combined with the attribute reduction idea of rough set theory, the generalized reduction concept based on multi-level rough set from the perspectives of positive region, information entropy and knowledge granularity of rough set theory were proposed. Furthermore, it was traversed on the basis of the hierarchical compatible granularity space of the original information system and the corresponding attribute values are coarsened. The selected test data sets were tested, and the experimental results were analyzed. Findings The results showed that the algorithm can guarantee the anonymity requirement of data publishing and improve the effect of classification modeling on anonymous data in social network environment. Research limitations/implications In the test and verification of privacy protection algorithm and privacy protection scheme, the efficiency of algorithm and scheme needs to be tested on a larger data scale. However, the data in this study are not enough. In the following research, more data will be used for testing and verification. Practical implications In the context of social network, the hierarchical structure of data is introduced into rough set theory as domain knowledge by referring to human granulation cognitive mechanism, and rough set modeling for complex hierarchical data is studied for hierarchical data of decision table. The theoretical research results are applied to hierarchical decision rule mining and k-anonymous privacy protection data mining research, which enriches the connotation of rough set theory and has important theoretical and practical significance for further promoting the application of this theory. In addition, combined the theory of secure multi-party computing and the theory of attribute reduction in rough set, a privacy protection feature selection algorithm for multi-source decision table is proposed, which solves the privacy protection problem of feature selection in distributed environment. It provides a set of effective rough set feature selection method for privacy protection classification mining in distributed environment, which has practical application value for promoting the development of privacy protection data mining. Originality/value In this study, the proposed algorithm and scheme can effectively protect the privacy of social network data, ensure the availability of social network graph structure and realize the need of both protection and sharing of user attributes and relational data." @default.
- W2997276186 created "2020-01-10" @default.
- W2997276186 creator A5036165449 @default.
- W2997276186 creator A5068008434 @default.
- W2997276186 date "2019-12-13" @default.
- W2997276186 modified "2023-10-05" @default.
- W2997276186 title "Social network analysis of law information privacy protection of cybersecurity based on rough set theory" @default.
- W2997276186 cites W2272918802 @default.
- W2997276186 cites W2522022198 @default.
- W2997276186 cites W2620323949 @default.
- W2997276186 cites W2753753116 @default.
- W2997276186 cites W2781996601 @default.
- W2997276186 cites W2786171514 @default.
- W2997276186 cites W2788139408 @default.
- W2997276186 cites W2790360011 @default.
- W2997276186 cites W2795686572 @default.
- W2997276186 cites W2798461587 @default.
- W2997276186 cites W2807759081 @default.
- W2997276186 cites W2809112858 @default.
- W2997276186 cites W2811275589 @default.
- W2997276186 cites W2884146796 @default.
- W2997276186 cites W2884490183 @default.
- W2997276186 cites W2886832575 @default.
- W2997276186 cites W2887544206 @default.
- W2997276186 doi "https://doi.org/10.1108/lht-11-2018-0166" @default.
- W2997276186 hasPublicationYear "2019" @default.
- W2997276186 type Work @default.
- W2997276186 sameAs 2997276186 @default.
- W2997276186 citedByCount "8" @default.
- W2997276186 countsByYear W29972761862021 @default.
- W2997276186 countsByYear W29972761862022 @default.
- W2997276186 countsByYear W29972761862023 @default.
- W2997276186 crossrefType "journal-article" @default.
- W2997276186 hasAuthorship W2997276186A5036165449 @default.
- W2997276186 hasAuthorship W2997276186A5068008434 @default.
- W2997276186 hasConcept C110875604 @default.
- W2997276186 hasConcept C111012933 @default.
- W2997276186 hasConcept C123201435 @default.
- W2997276186 hasConcept C124101348 @default.
- W2997276186 hasConcept C136764020 @default.
- W2997276186 hasConcept C169093310 @default.
- W2997276186 hasConcept C178005623 @default.
- W2997276186 hasConcept C38652104 @default.
- W2997276186 hasConcept C41008148 @default.
- W2997276186 hasConcept C4727928 @default.
- W2997276186 hasConcept C518677369 @default.
- W2997276186 hasConcept C99221444 @default.
- W2997276186 hasConceptScore W2997276186C110875604 @default.
- W2997276186 hasConceptScore W2997276186C111012933 @default.
- W2997276186 hasConceptScore W2997276186C123201435 @default.
- W2997276186 hasConceptScore W2997276186C124101348 @default.
- W2997276186 hasConceptScore W2997276186C136764020 @default.
- W2997276186 hasConceptScore W2997276186C169093310 @default.
- W2997276186 hasConceptScore W2997276186C178005623 @default.
- W2997276186 hasConceptScore W2997276186C38652104 @default.
- W2997276186 hasConceptScore W2997276186C41008148 @default.
- W2997276186 hasConceptScore W2997276186C4727928 @default.
- W2997276186 hasConceptScore W2997276186C518677369 @default.
- W2997276186 hasConceptScore W2997276186C99221444 @default.
- W2997276186 hasIssue "1" @default.
- W2997276186 hasLocation W29972761861 @default.
- W2997276186 hasOpenAccess W2997276186 @default.
- W2997276186 hasPrimaryLocation W29972761861 @default.
- W2997276186 hasRelatedWork W113555067 @default.
- W2997276186 hasRelatedWork W1993818606 @default.
- W2997276186 hasRelatedWork W2044490483 @default.
- W2997276186 hasRelatedWork W2077885602 @default.
- W2997276186 hasRelatedWork W2162531159 @default.
- W2997276186 hasRelatedWork W2366692990 @default.
- W2997276186 hasRelatedWork W2470059642 @default.
- W2997276186 hasRelatedWork W2596305496 @default.
- W2997276186 hasRelatedWork W2796585648 @default.
- W2997276186 hasRelatedWork W4243339578 @default.
- W2997276186 hasVolume "40" @default.
- W2997276186 isParatext "false" @default.
- W2997276186 isRetracted "false" @default.
- W2997276186 magId "2997276186" @default.
- W2997276186 workType "article" @default.