Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997308049> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2997308049 endingPage "107461" @default.
- W2997308049 startingPage "107461" @default.
- W2997308049 abstract "Abstract This paper introduces a hybrid model that incorporates a convolutional neural network (CNN) with a stacked bi-directional and uni-directional LSTM (SBULSTM) network, named CNN-SBULSTM, to address sequence data in the task of tool remaining useful life (RUL) prediction. In the CNN-SBULSTM network, CNN is firstly utilized for local feature extraction and dimension reduction. Then SBULSTM network is designed to denoise and encode the temporal information. Finally, multiple fully connected layers are built on the top of the CNN-SBULSTM network to add non-linearity to the output, and one regression layer is utilized to generate the target RUL. The cyber-physical system (CPS) is used to collect the internal controller signals and the external sensor signals during milling process. The proposed hybrid model and several other published methods are applied to the datasets acquired from milling experiments. The comparison and analysis results indicate that the integrated framework is applicable to track the tool wear evolution and predict its RUL with the average prediction accuracy reaching up to 90%." @default.
- W2997308049 created "2020-01-10" @default.
- W2997308049 creator A5010572965 @default.
- W2997308049 creator A5032841721 @default.
- W2997308049 creator A5045962922 @default.
- W2997308049 creator A5060156786 @default.
- W2997308049 creator A5065482772 @default.
- W2997308049 date "2020-03-01" @default.
- W2997308049 modified "2023-10-18" @default.
- W2997308049 title "A data-driven model for milling tool remaining useful life prediction with convolutional and stacked LSTM network" @default.
- W2997308049 cites W1978542677 @default.
- W2997308049 cites W2064601398 @default.
- W2997308049 cites W2069262928 @default.
- W2997308049 cites W2122585011 @default.
- W2997308049 cites W2171037402 @default.
- W2997308049 cites W2321274876 @default.
- W2997308049 cites W2580840020 @default.
- W2997308049 cites W2804872033 @default.
- W2997308049 cites W2887097770 @default.
- W2997308049 cites W2919115771 @default.
- W2997308049 cites W2943919793 @default.
- W2997308049 doi "https://doi.org/10.1016/j.measurement.2019.107461" @default.
- W2997308049 hasPublicationYear "2020" @default.
- W2997308049 type Work @default.
- W2997308049 sameAs 2997308049 @default.
- W2997308049 citedByCount "115" @default.
- W2997308049 countsByYear W29973080492020 @default.
- W2997308049 countsByYear W29973080492021 @default.
- W2997308049 countsByYear W29973080492022 @default.
- W2997308049 countsByYear W29973080492023 @default.
- W2997308049 crossrefType "journal-article" @default.
- W2997308049 hasAuthorship W2997308049A5010572965 @default.
- W2997308049 hasAuthorship W2997308049A5032841721 @default.
- W2997308049 hasAuthorship W2997308049A5045962922 @default.
- W2997308049 hasAuthorship W2997308049A5060156786 @default.
- W2997308049 hasAuthorship W2997308049A5065482772 @default.
- W2997308049 hasConcept C119857082 @default.
- W2997308049 hasConcept C124101348 @default.
- W2997308049 hasConcept C154945302 @default.
- W2997308049 hasConcept C41008148 @default.
- W2997308049 hasConcept C81363708 @default.
- W2997308049 hasConceptScore W2997308049C119857082 @default.
- W2997308049 hasConceptScore W2997308049C124101348 @default.
- W2997308049 hasConceptScore W2997308049C154945302 @default.
- W2997308049 hasConceptScore W2997308049C41008148 @default.
- W2997308049 hasConceptScore W2997308049C81363708 @default.
- W2997308049 hasLocation W29973080491 @default.
- W2997308049 hasOpenAccess W2997308049 @default.
- W2997308049 hasPrimaryLocation W29973080491 @default.
- W2997308049 hasRelatedWork W2337926734 @default.
- W2997308049 hasRelatedWork W2799614062 @default.
- W2997308049 hasRelatedWork W2978290780 @default.
- W2997308049 hasRelatedWork W3021430260 @default.
- W2997308049 hasRelatedWork W3027997911 @default.
- W2997308049 hasRelatedWork W3136076031 @default.
- W2997308049 hasRelatedWork W3173182854 @default.
- W2997308049 hasRelatedWork W4287776258 @default.
- W2997308049 hasRelatedWork W4308353688 @default.
- W2997308049 hasRelatedWork W4311257506 @default.
- W2997308049 hasVolume "154" @default.
- W2997308049 isParatext "false" @default.
- W2997308049 isRetracted "false" @default.
- W2997308049 magId "2997308049" @default.
- W2997308049 workType "article" @default.