Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997308669> ?p ?o ?g. }
- W2997308669 endingPage "39" @default.
- W2997308669 startingPage "24" @default.
- W2997308669 abstract "The availability of commercial wearable bio-sensors provides an opportunity for developing smart phone applications for real-time diagnosis that can be used to improve the health of the user. We propose a multi-level information fusion approach for learning a predictive model for blood pressure (BP) using electrocardiogram (ECG) sensor data. The approach fuses the information on five different levels: i) data collection, where data from multiple ECG sensors is collected; ii) feature extraction, where features are extracted from the collected data by different preprocessing methods; iii) information fusion, fusing the evaluation information from different classifiers; iv) information fusion using the information from multi-target regression models for each BP class; and v) information fusion using the information from multi-target regression models from all configurations as a single model. This is used for predicting the blood pressure values (systolic BP (SBP), diastolic BP (DBP), and mean arterial pressure (MAP)). Evaluating the methodology by using a separate test set indicates that the multi-level information fusion provides promising results, which are acceptable and comparable to the state-of-the-art results obtained for blood pressure prediction." @default.
- W2997308669 created "2020-01-10" @default.
- W2997308669 creator A5037342361 @default.
- W2997308669 creator A5073282867 @default.
- W2997308669 creator A5078572434 @default.
- W2997308669 creator A5082115266 @default.
- W2997308669 creator A5083777184 @default.
- W2997308669 creator A5085417152 @default.
- W2997308669 date "2020-06-01" @default.
- W2997308669 modified "2023-10-11" @default.
- W2997308669 title "Multi-level information fusion for learning a blood pressure predictive model using sensor data" @default.
- W2997308669 cites W1846937474 @default.
- W2997308669 cites W1989626687 @default.
- W2997308669 cites W2008056655 @default.
- W2997308669 cites W2009985472 @default.
- W2997308669 cites W2015242484 @default.
- W2997308669 cites W2017271435 @default.
- W2997308669 cites W2041492219 @default.
- W2997308669 cites W2043850087 @default.
- W2997308669 cites W2044355379 @default.
- W2997308669 cites W2059208589 @default.
- W2997308669 cites W2059851411 @default.
- W2997308669 cites W2091176396 @default.
- W2997308669 cites W2091859317 @default.
- W2997308669 cites W2113269449 @default.
- W2997308669 cites W2115627087 @default.
- W2997308669 cites W2117829084 @default.
- W2997308669 cites W2119543188 @default.
- W2997308669 cites W2130312979 @default.
- W2997308669 cites W2130313760 @default.
- W2997308669 cites W2144716110 @default.
- W2997308669 cites W2148217011 @default.
- W2997308669 cites W2151118505 @default.
- W2997308669 cites W2162800060 @default.
- W2997308669 cites W2169163271 @default.
- W2997308669 cites W2312589911 @default.
- W2997308669 cites W2312670327 @default.
- W2997308669 cites W2341394157 @default.
- W2997308669 cites W2465684847 @default.
- W2997308669 cites W2518937691 @default.
- W2997308669 cites W2547146855 @default.
- W2997308669 cites W2566374956 @default.
- W2997308669 cites W2597701578 @default.
- W2997308669 cites W2604438705 @default.
- W2997308669 cites W2623050630 @default.
- W2997308669 cites W2625506697 @default.
- W2997308669 cites W2733136860 @default.
- W2997308669 cites W2741501259 @default.
- W2997308669 cites W2770536576 @default.
- W2997308669 cites W2796697326 @default.
- W2997308669 cites W2865062175 @default.
- W2997308669 cites W2887637888 @default.
- W2997308669 cites W2888894984 @default.
- W2997308669 cites W4212883601 @default.
- W2997308669 cites W4230391853 @default.
- W2997308669 cites W7687383 @default.
- W2997308669 doi "https://doi.org/10.1016/j.inffus.2019.12.008" @default.
- W2997308669 hasPublicationYear "2020" @default.
- W2997308669 type Work @default.
- W2997308669 sameAs 2997308669 @default.
- W2997308669 citedByCount "30" @default.
- W2997308669 countsByYear W29973086692020 @default.
- W2997308669 countsByYear W29973086692021 @default.
- W2997308669 countsByYear W29973086692022 @default.
- W2997308669 countsByYear W29973086692023 @default.
- W2997308669 crossrefType "journal-article" @default.
- W2997308669 hasAuthorship W2997308669A5037342361 @default.
- W2997308669 hasAuthorship W2997308669A5073282867 @default.
- W2997308669 hasAuthorship W2997308669A5078572434 @default.
- W2997308669 hasAuthorship W2997308669A5082115266 @default.
- W2997308669 hasAuthorship W2997308669A5083777184 @default.
- W2997308669 hasAuthorship W2997308669A5085417152 @default.
- W2997308669 hasBestOaLocation W29973086691 @default.
- W2997308669 hasConcept C10551718 @default.
- W2997308669 hasConcept C119857082 @default.
- W2997308669 hasConcept C124101348 @default.
- W2997308669 hasConcept C138885662 @default.
- W2997308669 hasConcept C149635348 @default.
- W2997308669 hasConcept C150594956 @default.
- W2997308669 hasConcept C153180895 @default.
- W2997308669 hasConcept C154945302 @default.
- W2997308669 hasConcept C158525013 @default.
- W2997308669 hasConcept C2982962833 @default.
- W2997308669 hasConcept C33954974 @default.
- W2997308669 hasConcept C34736171 @default.
- W2997308669 hasConcept C41008148 @default.
- W2997308669 hasConcept C41895202 @default.
- W2997308669 hasConcept C52622490 @default.
- W2997308669 hasConceptScore W2997308669C10551718 @default.
- W2997308669 hasConceptScore W2997308669C119857082 @default.
- W2997308669 hasConceptScore W2997308669C124101348 @default.
- W2997308669 hasConceptScore W2997308669C138885662 @default.
- W2997308669 hasConceptScore W2997308669C149635348 @default.
- W2997308669 hasConceptScore W2997308669C150594956 @default.
- W2997308669 hasConceptScore W2997308669C153180895 @default.
- W2997308669 hasConceptScore W2997308669C154945302 @default.
- W2997308669 hasConceptScore W2997308669C158525013 @default.
- W2997308669 hasConceptScore W2997308669C2982962833 @default.