Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997337740> ?p ?o ?g. }
- W2997337740 endingPage "102149" @default.
- W2997337740 startingPage "102149" @default.
- W2997337740 abstract "Introduction: Longitudinal magnetic resonance imaging (MRI) has an important role in multiple sclerosis (MS) diagnosis and follow-up. Specifically, the presence of new T2-w lesions on brain MR scans is considered a predictive biomarker for the disease. In this study, we propose a fully convolutional neural network (FCNN) to detect new T2-w lesions in longitudinal brain MR images. Methods: One year apart, multichannel brain MR scans (T1-w, T2-w, PD-w, and FLAIR) were obtained for 60 patients, 36 of them with new T2-w lesions. Modalities from both temporal points were preprocessed and linearly coregistered. Afterwards, an FCNN, whose inputs were from the baseline and follow-up images, was trained to detect new MS lesions. The first part of the network consisted of U-Net blocks that learned the deformation fields (DFs) and nonlinearly registered the baseline image to the follow-up image for each input modality. The learned DFs together with the baseline and follow-up images were then fed to the second part, another U-Net that performed the final detection and segmentation of new T2-w lesions. The model was trained end-to-end, simultaneously learning both the DFs and the new T2-w lesions, using a combined loss function. We evaluated the performance of the model following a leave-one-out cross-validation scheme. Results: In terms of the detection of new lesions, we obtained a mean Dice similarity coefficient of 0.83 with a true positive rate of 83.09% and a false positive detection rate of 9.36%. In terms of segmentation, we obtained a mean Dice similarity coefficient of 0.55. The performance of our model was significantly better compared to the state-of-the-art methods (p < 0.05). Conclusions: Our proposal shows the benefits of combining a learning-based registration network with a segmentation network. Compared to other methods, the proposed model decreases the number of false positives. During testing, the proposed model operates faster than the other two state-of-the-art methods based on the DF obtained by Demons." @default.
- W2997337740 created "2020-01-10" @default.
- W2997337740 creator A5027022796 @default.
- W2997337740 creator A5027168396 @default.
- W2997337740 creator A5027999733 @default.
- W2997337740 creator A5049566648 @default.
- W2997337740 creator A5063275381 @default.
- W2997337740 creator A5064897887 @default.
- W2997337740 creator A5078118657 @default.
- W2997337740 creator A5085592048 @default.
- W2997337740 date "2020-01-01" @default.
- W2997337740 modified "2023-10-18" @default.
- W2997337740 title "A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis" @default.
- W2997337740 cites W1515178147 @default.
- W2997337740 cites W1884191083 @default.
- W2997337740 cites W1943838624 @default.
- W2997337740 cites W1965997336 @default.
- W2997337740 cites W1970928383 @default.
- W2997337740 cites W2007153649 @default.
- W2997337740 cites W2007271588 @default.
- W2997337740 cites W2023363651 @default.
- W2997337740 cites W2026752633 @default.
- W2997337740 cites W2028094999 @default.
- W2997337740 cites W2030992801 @default.
- W2997337740 cites W2041543008 @default.
- W2997337740 cites W2056721442 @default.
- W2997337740 cites W2078379142 @default.
- W2997337740 cites W2080069478 @default.
- W2997337740 cites W2082526668 @default.
- W2997337740 cites W2095417127 @default.
- W2997337740 cites W2095520872 @default.
- W2997337740 cites W2102848905 @default.
- W2997337740 cites W2105490558 @default.
- W2997337740 cites W2107956652 @default.
- W2997337740 cites W2116544624 @default.
- W2997337740 cites W2117340355 @default.
- W2997337740 cites W2118961645 @default.
- W2997337740 cites W2125656488 @default.
- W2997337740 cites W2125666654 @default.
- W2997337740 cites W2137069829 @default.
- W2997337740 cites W2140749404 @default.
- W2997337740 cites W2145661921 @default.
- W2997337740 cites W2146531642 @default.
- W2997337740 cites W2154158661 @default.
- W2997337740 cites W2155298532 @default.
- W2997337740 cites W2158167845 @default.
- W2997337740 cites W2170167891 @default.
- W2997337740 cites W2301358467 @default.
- W2997337740 cites W2310992461 @default.
- W2997337740 cites W2342591535 @default.
- W2997337740 cites W2411162855 @default.
- W2997337740 cites W2514722235 @default.
- W2997337740 cites W2604920239 @default.
- W2997337740 cites W2756976920 @default.
- W2997337740 cites W2769568471 @default.
- W2997337740 cites W2902300896 @default.
- W2997337740 cites W2943358380 @default.
- W2997337740 cites W2959978008 @default.
- W2997337740 cites W2964262389 @default.
- W2997337740 cites W3104258355 @default.
- W2997337740 cites W989828740 @default.
- W2997337740 doi "https://doi.org/10.1016/j.nicl.2019.102149" @default.
- W2997337740 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7036701" @default.
- W2997337740 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31918065" @default.
- W2997337740 hasPublicationYear "2020" @default.
- W2997337740 type Work @default.
- W2997337740 sameAs 2997337740 @default.
- W2997337740 citedByCount "35" @default.
- W2997337740 countsByYear W29973377402020 @default.
- W2997337740 countsByYear W29973377402021 @default.
- W2997337740 countsByYear W29973377402022 @default.
- W2997337740 countsByYear W29973377402023 @default.
- W2997337740 crossrefType "journal-article" @default.
- W2997337740 hasAuthorship W2997337740A5027022796 @default.
- W2997337740 hasAuthorship W2997337740A5027168396 @default.
- W2997337740 hasAuthorship W2997337740A5027999733 @default.
- W2997337740 hasAuthorship W2997337740A5049566648 @default.
- W2997337740 hasAuthorship W2997337740A5063275381 @default.
- W2997337740 hasAuthorship W2997337740A5064897887 @default.
- W2997337740 hasAuthorship W2997337740A5078118657 @default.
- W2997337740 hasAuthorship W2997337740A5085592048 @default.
- W2997337740 hasBestOaLocation W29973377401 @default.
- W2997337740 hasConcept C101070640 @default.
- W2997337740 hasConcept C118552586 @default.
- W2997337740 hasConcept C124504099 @default.
- W2997337740 hasConcept C126838900 @default.
- W2997337740 hasConcept C143409427 @default.
- W2997337740 hasConcept C153180895 @default.
- W2997337740 hasConcept C154945302 @default.
- W2997337740 hasConcept C163892561 @default.
- W2997337740 hasConcept C2780640218 @default.
- W2997337740 hasConcept C2989005 @default.
- W2997337740 hasConcept C41008148 @default.
- W2997337740 hasConcept C71924100 @default.
- W2997337740 hasConcept C81363708 @default.
- W2997337740 hasConcept C89600930 @default.
- W2997337740 hasConceptScore W2997337740C101070640 @default.
- W2997337740 hasConceptScore W2997337740C118552586 @default.