Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997404503> ?p ?o ?g. }
- W2997404503 endingPage "116851" @default.
- W2997404503 startingPage "116851" @default.
- W2997404503 abstract "Abstract The petrochemical industry is the top priority of the national economy and sustainable development. For the purpose of improving the energy efficiency in the petrochemical industry, an energy optimization and prediction model based on the improved convolutional neural network (CNN) integrating the cross-feature (CF) (CF–CNN) is proposed. The CF can combine the correlation between features to obtain the input of the CNN, which can avoid over-fitting problems caused by fewer features. Then the CNN is designed as a three-layer structure and the Rectified Linear Unit (ReLU) is introduced to achieve better generalization capability and stability with boiler fluctuations in the petrochemical industry. The developed method has better performances of modeling accuracy and applicability than that of the back-propagation (BP) neural network and the extreme learning machine (ELM) on University of California Irvine (UCI) benchmark datasets. Furthermore, the developed method is applied to establish an energy optimization and prediction model of ethylene production systems in the petrochemical industry. The experimental results testify the capability of the proposed method. Meanwhile, the average relative generalization error is 2.86%, and the energy utilization efficiency increases by 6.38%, which leads to reduction of the carbon emissions by 5.29%." @default.
- W2997404503 created "2020-01-10" @default.
- W2997404503 creator A5000406335 @default.
- W2997404503 creator A5028756112 @default.
- W2997404503 creator A5029436410 @default.
- W2997404503 creator A5034064578 @default.
- W2997404503 creator A5067057037 @default.
- W2997404503 creator A5087563094 @default.
- W2997404503 date "2020-03-01" @default.
- W2997404503 modified "2023-10-18" @default.
- W2997404503 title "Energy optimization and prediction modeling of petrochemical industries: An improved convolutional neural network based on cross-feature" @default.
- W2997404503 cites W1498436455 @default.
- W2997404503 cites W1596967108 @default.
- W2997404503 cites W1963631516 @default.
- W2997404503 cites W1981591697 @default.
- W2997404503 cites W1984530193 @default.
- W2997404503 cites W1990943093 @default.
- W2997404503 cites W2002454301 @default.
- W2997404503 cites W2003719799 @default.
- W2997404503 cites W2004203510 @default.
- W2997404503 cites W2035047810 @default.
- W2997404503 cites W2062387331 @default.
- W2997404503 cites W2084788377 @default.
- W2997404503 cites W2111072639 @default.
- W2997404503 cites W2176950688 @default.
- W2997404503 cites W2261689926 @default.
- W2997404503 cites W2279613615 @default.
- W2997404503 cites W2301541953 @default.
- W2997404503 cites W2337665756 @default.
- W2997404503 cites W2502949459 @default.
- W2997404503 cites W2545877979 @default.
- W2997404503 cites W2556345765 @default.
- W2997404503 cites W2562923307 @default.
- W2997404503 cites W2582629241 @default.
- W2997404503 cites W2594332903 @default.
- W2997404503 cites W2730411900 @default.
- W2997404503 cites W2742496915 @default.
- W2997404503 cites W2761106072 @default.
- W2997404503 cites W2789251278 @default.
- W2997404503 cites W2801249843 @default.
- W2997404503 cites W2900068343 @default.
- W2997404503 cites W2905908075 @default.
- W2997404503 cites W2912066728 @default.
- W2997404503 cites W2919115771 @default.
- W2997404503 cites W2963143328 @default.
- W2997404503 cites W341735883 @default.
- W2997404503 cites W4236875171 @default.
- W2997404503 doi "https://doi.org/10.1016/j.energy.2019.116851" @default.
- W2997404503 hasPublicationYear "2020" @default.
- W2997404503 type Work @default.
- W2997404503 sameAs 2997404503 @default.
- W2997404503 citedByCount "71" @default.
- W2997404503 countsByYear W29974045032020 @default.
- W2997404503 countsByYear W29974045032021 @default.
- W2997404503 countsByYear W29974045032022 @default.
- W2997404503 countsByYear W29974045032023 @default.
- W2997404503 crossrefType "journal-article" @default.
- W2997404503 hasAuthorship W2997404503A5000406335 @default.
- W2997404503 hasAuthorship W2997404503A5028756112 @default.
- W2997404503 hasAuthorship W2997404503A5029436410 @default.
- W2997404503 hasAuthorship W2997404503A5034064578 @default.
- W2997404503 hasAuthorship W2997404503A5067057037 @default.
- W2997404503 hasAuthorship W2997404503A5087563094 @default.
- W2997404503 hasConcept C105795698 @default.
- W2997404503 hasConcept C119857082 @default.
- W2997404503 hasConcept C127413603 @default.
- W2997404503 hasConcept C138885662 @default.
- W2997404503 hasConcept C154945302 @default.
- W2997404503 hasConcept C170573351 @default.
- W2997404503 hasConcept C186370098 @default.
- W2997404503 hasConcept C2776401178 @default.
- W2997404503 hasConcept C33923547 @default.
- W2997404503 hasConcept C41008148 @default.
- W2997404503 hasConcept C41895202 @default.
- W2997404503 hasConcept C50644808 @default.
- W2997404503 hasConcept C81363708 @default.
- W2997404503 hasConcept C87717796 @default.
- W2997404503 hasConceptScore W2997404503C105795698 @default.
- W2997404503 hasConceptScore W2997404503C119857082 @default.
- W2997404503 hasConceptScore W2997404503C127413603 @default.
- W2997404503 hasConceptScore W2997404503C138885662 @default.
- W2997404503 hasConceptScore W2997404503C154945302 @default.
- W2997404503 hasConceptScore W2997404503C170573351 @default.
- W2997404503 hasConceptScore W2997404503C186370098 @default.
- W2997404503 hasConceptScore W2997404503C2776401178 @default.
- W2997404503 hasConceptScore W2997404503C33923547 @default.
- W2997404503 hasConceptScore W2997404503C41008148 @default.
- W2997404503 hasConceptScore W2997404503C41895202 @default.
- W2997404503 hasConceptScore W2997404503C50644808 @default.
- W2997404503 hasConceptScore W2997404503C81363708 @default.
- W2997404503 hasConceptScore W2997404503C87717796 @default.
- W2997404503 hasFunder F4320321001 @default.
- W2997404503 hasFunder F4320326674 @default.
- W2997404503 hasFunder F4320335787 @default.
- W2997404503 hasLocation W29974045031 @default.
- W2997404503 hasOpenAccess W2997404503 @default.
- W2997404503 hasPrimaryLocation W29974045031 @default.
- W2997404503 hasRelatedWork W2337926734 @default.