Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997471800> ?p ?o ?g. }
- W2997471800 endingPage "45" @default.
- W2997471800 startingPage "26" @default.
- W2997471800 abstract "In recent years, deep learning (DL) based systems have become very popular for constructing hierarchical representations from unlabeled data. Moreover, DL approaches have been shown to exceed foregoing state of the art machine learning models in various areas, by pattern recognition being one of the more important cases. This paper applies Convolutional Deep Belief Networks (CDBN) to textual image data containing Arabic handwritten script (AHS) and evaluated it on two different databases characterized by the low/high-dimension property. In addition to the benefits provided by deep networks, the system is protected against over-fitting. Experimentally, the authors demonstrated that the extracted features are effective for handwritten character recognition and show very good performance comparable to the state of the art on handwritten text recognition. Yet using Dropout, the proposed CDBN architectures achieved a promising accuracy rates of 91.55% and 98.86% when applied to IFN/ENIT and HACDB databases, respectively." @default.
- W2997471800 created "2020-01-10" @default.
- W2997471800 creator A5004803772 @default.
- W2997471800 creator A5052764348 @default.
- W2997471800 date "2019-10-01" @default.
- W2997471800 modified "2023-09-30" @default.
- W2997471800 title "Boosting of Deep Convolutional Architectures for Arabic Handwriting Recognition" @default.
- W2997471800 cites W1971014294 @default.
- W2997471800 cites W1985393501 @default.
- W2997471800 cites W1993482042 @default.
- W2997471800 cites W1993882792 @default.
- W2997471800 cites W2050265252 @default.
- W2997471800 cites W2071222517 @default.
- W2997471800 cites W2100495367 @default.
- W2997471800 cites W2106051978 @default.
- W2997471800 cites W2111364271 @default.
- W2997471800 cites W2112796928 @default.
- W2997471800 cites W2113606819 @default.
- W2997471800 cites W2116064496 @default.
- W2997471800 cites W2121616342 @default.
- W2997471800 cites W2130325614 @default.
- W2997471800 cites W2136922672 @default.
- W2997471800 cites W2139427956 @default.
- W2997471800 cites W2145889472 @default.
- W2997471800 cites W2285099633 @default.
- W2997471800 cites W2293167034 @default.
- W2997471800 cites W2429972724 @default.
- W2997471800 cites W2467325985 @default.
- W2997471800 cites W2510756168 @default.
- W2997471800 cites W2546302380 @default.
- W2997471800 cites W2555500570 @default.
- W2997471800 cites W2623403043 @default.
- W2997471800 cites W2748213839 @default.
- W2997471800 cites W2896568931 @default.
- W2997471800 cites W2954996726 @default.
- W2997471800 cites W4239510810 @default.
- W2997471800 cites W4244079430 @default.
- W2997471800 cites W71815513 @default.
- W2997471800 doi "https://doi.org/10.4018/ijmdem.2019100102" @default.
- W2997471800 hasPublicationYear "2019" @default.
- W2997471800 type Work @default.
- W2997471800 sameAs 2997471800 @default.
- W2997471800 citedByCount "11" @default.
- W2997471800 countsByYear W29974718002020 @default.
- W2997471800 countsByYear W29974718002021 @default.
- W2997471800 countsByYear W29974718002022 @default.
- W2997471800 countsByYear W29974718002023 @default.
- W2997471800 crossrefType "journal-article" @default.
- W2997471800 hasAuthorship W2997471800A5004803772 @default.
- W2997471800 hasAuthorship W2997471800A5052764348 @default.
- W2997471800 hasConcept C108583219 @default.
- W2997471800 hasConcept C112640561 @default.
- W2997471800 hasConcept C115961682 @default.
- W2997471800 hasConcept C119857082 @default.
- W2997471800 hasConcept C138885662 @default.
- W2997471800 hasConcept C153180895 @default.
- W2997471800 hasConcept C154945302 @default.
- W2997471800 hasConcept C202444582 @default.
- W2997471800 hasConcept C204321447 @default.
- W2997471800 hasConcept C2776145597 @default.
- W2997471800 hasConcept C2779386606 @default.
- W2997471800 hasConcept C28490314 @default.
- W2997471800 hasConcept C2987247673 @default.
- W2997471800 hasConcept C33676613 @default.
- W2997471800 hasConcept C33923547 @default.
- W2997471800 hasConcept C41008148 @default.
- W2997471800 hasConcept C41895202 @default.
- W2997471800 hasConcept C46686674 @default.
- W2997471800 hasConcept C52622490 @default.
- W2997471800 hasConcept C81363708 @default.
- W2997471800 hasConcept C96455323 @default.
- W2997471800 hasConceptScore W2997471800C108583219 @default.
- W2997471800 hasConceptScore W2997471800C112640561 @default.
- W2997471800 hasConceptScore W2997471800C115961682 @default.
- W2997471800 hasConceptScore W2997471800C119857082 @default.
- W2997471800 hasConceptScore W2997471800C138885662 @default.
- W2997471800 hasConceptScore W2997471800C153180895 @default.
- W2997471800 hasConceptScore W2997471800C154945302 @default.
- W2997471800 hasConceptScore W2997471800C202444582 @default.
- W2997471800 hasConceptScore W2997471800C204321447 @default.
- W2997471800 hasConceptScore W2997471800C2776145597 @default.
- W2997471800 hasConceptScore W2997471800C2779386606 @default.
- W2997471800 hasConceptScore W2997471800C28490314 @default.
- W2997471800 hasConceptScore W2997471800C2987247673 @default.
- W2997471800 hasConceptScore W2997471800C33676613 @default.
- W2997471800 hasConceptScore W2997471800C33923547 @default.
- W2997471800 hasConceptScore W2997471800C41008148 @default.
- W2997471800 hasConceptScore W2997471800C41895202 @default.
- W2997471800 hasConceptScore W2997471800C46686674 @default.
- W2997471800 hasConceptScore W2997471800C52622490 @default.
- W2997471800 hasConceptScore W2997471800C81363708 @default.
- W2997471800 hasConceptScore W2997471800C96455323 @default.
- W2997471800 hasIssue "4" @default.
- W2997471800 hasLocation W29974718001 @default.
- W2997471800 hasOpenAccess W2997471800 @default.
- W2997471800 hasPrimaryLocation W29974718001 @default.
- W2997471800 hasRelatedWork W2136489243 @default.
- W2997471800 hasRelatedWork W2137744223 @default.