Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997479617> ?p ?o ?g. }
- W2997479617 endingPage "88" @default.
- W2997479617 startingPage "83" @default.
- W2997479617 abstract "Recently, machine learning (ML) methods have gained popularity and have performed as powerfully predictive tools in various areas of academic and industrious activities. In comparison, their application in catalysis has been underdeveloped. Relying on the rapid development of different algorithms and their implementation, it is the right timing to harvest the potential of ML in catalysis across academy and industry spectra. Herein, we discuss the current applications in the field of homogeneous and heterogeneous catalysis by using various ML approaches. To the best of our knowledge, modern statistical learning techniques will be a strong tool for computational optimization and discovery. This in turn will accurately extract the underlying mechanism in the model that converts readily available data and precatalysts into their promising and useful ones." @default.
- W2997479617 created "2020-01-10" @default.
- W2997479617 creator A5033474482 @default.
- W2997479617 creator A5066301860 @default.
- W2997479617 creator A5075832377 @default.
- W2997479617 date "2019-12-24" @default.
- W2997479617 modified "2023-10-11" @default.
- W2997479617 title "Machine Learning in Catalysis, From Proposal to Practicing" @default.
- W2997479617 cites W1901616594 @default.
- W2997479617 cites W2050703162 @default.
- W2997479617 cites W2741906484 @default.
- W2997479617 cites W2746371905 @default.
- W2997479617 cites W2760744264 @default.
- W2997479617 cites W2785942661 @default.
- W2997479617 cites W2791210137 @default.
- W2997479617 cites W2797402103 @default.
- W2997479617 cites W2799567665 @default.
- W2997479617 cites W2805401872 @default.
- W2997479617 cites W2809240611 @default.
- W2997479617 cites W2890787646 @default.
- W2997479617 cites W2890801368 @default.
- W2997479617 cites W2895896993 @default.
- W2997479617 cites W2898155676 @default.
- W2997479617 cites W2902329803 @default.
- W2997479617 cites W2913505329 @default.
- W2997479617 cites W2920327541 @default.
- W2997479617 cites W2921996776 @default.
- W2997479617 cites W2943843211 @default.
- W2997479617 cites W2946850705 @default.
- W2997479617 cites W2950128007 @default.
- W2997479617 cites W2959165901 @default.
- W2997479617 cites W2972374598 @default.
- W2997479617 cites W601070381 @default.
- W2997479617 doi "https://doi.org/10.1021/acsomega.9b03673" @default.
- W2997479617 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6963892" @default.
- W2997479617 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31956754" @default.
- W2997479617 hasPublicationYear "2019" @default.
- W2997479617 type Work @default.
- W2997479617 sameAs 2997479617 @default.
- W2997479617 citedByCount "89" @default.
- W2997479617 countsByYear W29974796172020 @default.
- W2997479617 countsByYear W29974796172021 @default.
- W2997479617 countsByYear W29974796172022 @default.
- W2997479617 countsByYear W29974796172023 @default.
- W2997479617 crossrefType "journal-article" @default.
- W2997479617 hasAuthorship W2997479617A5033474482 @default.
- W2997479617 hasAuthorship W2997479617A5066301860 @default.
- W2997479617 hasAuthorship W2997479617A5075832377 @default.
- W2997479617 hasBestOaLocation W29974796171 @default.
- W2997479617 hasConcept C111472728 @default.
- W2997479617 hasConcept C114614502 @default.
- W2997479617 hasConcept C119857082 @default.
- W2997479617 hasConcept C127413603 @default.
- W2997479617 hasConcept C138885662 @default.
- W2997479617 hasConcept C154945302 @default.
- W2997479617 hasConcept C161790260 @default.
- W2997479617 hasConcept C17744445 @default.
- W2997479617 hasConcept C178790620 @default.
- W2997479617 hasConcept C183696295 @default.
- W2997479617 hasConcept C185592680 @default.
- W2997479617 hasConcept C199539241 @default.
- W2997479617 hasConcept C202444582 @default.
- W2997479617 hasConcept C2522767166 @default.
- W2997479617 hasConcept C2780586970 @default.
- W2997479617 hasConcept C33923547 @default.
- W2997479617 hasConcept C41008148 @default.
- W2997479617 hasConcept C66882249 @default.
- W2997479617 hasConcept C89611455 @default.
- W2997479617 hasConcept C9652623 @default.
- W2997479617 hasConceptScore W2997479617C111472728 @default.
- W2997479617 hasConceptScore W2997479617C114614502 @default.
- W2997479617 hasConceptScore W2997479617C119857082 @default.
- W2997479617 hasConceptScore W2997479617C127413603 @default.
- W2997479617 hasConceptScore W2997479617C138885662 @default.
- W2997479617 hasConceptScore W2997479617C154945302 @default.
- W2997479617 hasConceptScore W2997479617C161790260 @default.
- W2997479617 hasConceptScore W2997479617C17744445 @default.
- W2997479617 hasConceptScore W2997479617C178790620 @default.
- W2997479617 hasConceptScore W2997479617C183696295 @default.
- W2997479617 hasConceptScore W2997479617C185592680 @default.
- W2997479617 hasConceptScore W2997479617C199539241 @default.
- W2997479617 hasConceptScore W2997479617C202444582 @default.
- W2997479617 hasConceptScore W2997479617C2522767166 @default.
- W2997479617 hasConceptScore W2997479617C2780586970 @default.
- W2997479617 hasConceptScore W2997479617C33923547 @default.
- W2997479617 hasConceptScore W2997479617C41008148 @default.
- W2997479617 hasConceptScore W2997479617C66882249 @default.
- W2997479617 hasConceptScore W2997479617C89611455 @default.
- W2997479617 hasConceptScore W2997479617C9652623 @default.
- W2997479617 hasIssue "1" @default.
- W2997479617 hasLocation W29974796171 @default.
- W2997479617 hasLocation W29974796172 @default.
- W2997479617 hasLocation W29974796173 @default.
- W2997479617 hasLocation W29974796174 @default.
- W2997479617 hasLocation W29974796175 @default.
- W2997479617 hasOpenAccess W2997479617 @default.
- W2997479617 hasPrimaryLocation W29974796171 @default.
- W2997479617 hasRelatedWork W2218972967 @default.