Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997494414> ?p ?o ?g. }
- W2997494414 endingPage "114145" @default.
- W2997494414 startingPage "114145" @default.
- W2997494414 abstract "Abstract Up-to-date maps of soil organic carbon (SOC) concentrations can provide vital information for monitoring global or regional soil C changes and soil quality. In this study, a national soil dataset collected in the 2010 s was applied to produce SOC maps of mainland China at soil depths of 0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm and 100–200 cm. A stacking ensemble learning framework was utilized to take advantage of the optimal predictions from individual models. A voting-based ensemble learning model (VELM) was proposed with consideration of pedoclimatic zones. In this model, three machine learning models were separately trained for every pedoclimatic zone, and their predictions were selectively merged together. A weighted ensemble learning model (WELM), in which the parameterization considered all zones (i.e., the whole study area) simultaneously, was also trained for comparison. The overall R2 values of these two methods ranged from 0.16 to 0.57 and decreased with depth. Based on the independent validation, the R2 values ranged from 0.41 to 0.57 in the topsoil (0–5 cm, 5–15 cm and 15–30 cm). Overall accuracy metrics implied that the VELM and WELM yielded nearly the same prediction performances. However, model validation in the pedoclimatic zones showed that the VELM obviously outperformed the WELM, with the VELM generally improving the accuracy by 12.6%. Based on the independent validation, we also compared our predictions with other soil map products. Although the spatial patterns were similar, the predicted SOC maps outperformed two other products. The comparison of the two ensemble models should serve as a reminder that if new national or regional soil maps are generated, validation based on pedoclimatic zones or other soil-landscape units may be necessary before applying these maps." @default.
- W2997494414 created "2020-01-10" @default.
- W2997494414 creator A5005435623 @default.
- W2997494414 creator A5010077387 @default.
- W2997494414 creator A5012342890 @default.
- W2997494414 creator A5022131069 @default.
- W2997494414 creator A5035655990 @default.
- W2997494414 creator A5060346171 @default.
- W2997494414 creator A5064933626 @default.
- W2997494414 creator A5085075897 @default.
- W2997494414 creator A5090625931 @default.
- W2997494414 date "2020-04-01" @default.
- W2997494414 modified "2023-10-18" @default.
- W2997494414 title "Pedoclimatic zone-based three-dimensional soil organic carbon mapping in China" @default.
- W2997494414 cites W1485626427 @default.
- W2997494414 cites W1786856418 @default.
- W2997494414 cites W1911784449 @default.
- W2997494414 cites W1915373740 @default.
- W2997494414 cites W1967999686 @default.
- W2997494414 cites W1984828485 @default.
- W2997494414 cites W1990096846 @default.
- W2997494414 cites W1993232367 @default.
- W2997494414 cites W1994221921 @default.
- W2997494414 cites W1997651568 @default.
- W2997494414 cites W2000046295 @default.
- W2997494414 cites W2006249338 @default.
- W2997494414 cites W2054325787 @default.
- W2997494414 cites W2058191772 @default.
- W2997494414 cites W2065762344 @default.
- W2997494414 cites W2065961561 @default.
- W2997494414 cites W2078712779 @default.
- W2997494414 cites W2089568739 @default.
- W2997494414 cites W2115818260 @default.
- W2997494414 cites W2116395914 @default.
- W2997494414 cites W2116602136 @default.
- W2997494414 cites W2117416558 @default.
- W2997494414 cites W2124685634 @default.
- W2997494414 cites W2127179457 @default.
- W2997494414 cites W2130089270 @default.
- W2997494414 cites W2138240506 @default.
- W2997494414 cites W2144189317 @default.
- W2997494414 cites W2146208781 @default.
- W2997494414 cites W2156909104 @default.
- W2997494414 cites W2166640724 @default.
- W2997494414 cites W2175601372 @default.
- W2997494414 cites W2186294614 @default.
- W2997494414 cites W2191676425 @default.
- W2997494414 cites W2394786463 @default.
- W2997494414 cites W2400795375 @default.
- W2997494414 cites W2510415821 @default.
- W2997494414 cites W2579486704 @default.
- W2997494414 cites W2588003345 @default.
- W2997494414 cites W2653815135 @default.
- W2997494414 cites W2727623211 @default.
- W2997494414 cites W2735018031 @default.
- W2997494414 cites W2768169305 @default.
- W2997494414 cites W2800522346 @default.
- W2997494414 cites W2885745521 @default.
- W2997494414 cites W2885835777 @default.
- W2997494414 cites W2889701190 @default.
- W2997494414 cites W2911964244 @default.
- W2997494414 cites W2912077313 @default.
- W2997494414 cites W2920489741 @default.
- W2997494414 cites W2924698935 @default.
- W2997494414 cites W2947342498 @default.
- W2997494414 cites W3102476541 @default.
- W2997494414 cites W4231864045 @default.
- W2997494414 cites W4300835459 @default.
- W2997494414 cites W848293733 @default.
- W2997494414 cites W890974504 @default.
- W2997494414 cites W92141931 @default.
- W2997494414 doi "https://doi.org/10.1016/j.geoderma.2019.114145" @default.
- W2997494414 hasPublicationYear "2020" @default.
- W2997494414 type Work @default.
- W2997494414 sameAs 2997494414 @default.
- W2997494414 citedByCount "44" @default.
- W2997494414 countsByYear W29974944142020 @default.
- W2997494414 countsByYear W29974944142021 @default.
- W2997494414 countsByYear W29974944142022 @default.
- W2997494414 countsByYear W29974944142023 @default.
- W2997494414 crossrefType "journal-article" @default.
- W2997494414 hasAuthorship W2997494414A5005435623 @default.
- W2997494414 hasAuthorship W2997494414A5010077387 @default.
- W2997494414 hasAuthorship W2997494414A5012342890 @default.
- W2997494414 hasAuthorship W2997494414A5022131069 @default.
- W2997494414 hasAuthorship W2997494414A5035655990 @default.
- W2997494414 hasAuthorship W2997494414A5060346171 @default.
- W2997494414 hasAuthorship W2997494414A5064933626 @default.
- W2997494414 hasAuthorship W2997494414A5085075897 @default.
- W2997494414 hasAuthorship W2997494414A5090625931 @default.
- W2997494414 hasBestOaLocation W29974944141 @default.
- W2997494414 hasConcept C100970517 @default.
- W2997494414 hasConcept C104779481 @default.
- W2997494414 hasConcept C107872376 @default.
- W2997494414 hasConcept C11413529 @default.
- W2997494414 hasConcept C127313418 @default.
- W2997494414 hasConcept C140205800 @default.
- W2997494414 hasConcept C158787203 @default.