Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997658081> ?p ?o ?g. }
- W2997658081 abstract "Stock price prediction has been always a hot topic in financial mathematics. There are lots of studies with various techniques on this area. Prediction studies are based on the assumption that the next price has a relation with the past values. On the other hand, artificial neural networks and especially deep learning is one of the best tools for extraction of the relations between inputs and outputs. Naturally, deep learning is becoming a widely used tool day by day. There are some developed neural nets especially for time series like RNN and LSTM. Besides the structure of the neural net, the type of the input is also important for the success of the prediction. Same information can be represented in different formats without any loss. This study investigates the effect of representation of the information in the input on the prediction success. Experiments are done with the USDTRY day close values starting from 1994 till 2017. 4 different representations are tested namely time series itself, Real DFT, DWT and DCT. The transforms used are lossless and time series can be reconstructed exactly so they are just different representations of the information. 64 tests with different time spans are conducted. The same neural net structure with 512 input neurons, 3 hidden layers, 10 output neurons is used for all tests except a slight difference for Real DFT. The results show that DCT gives the best results due to its high energy compaction property. Energy compaction results a sorted array in terms of significance therefore results stable weight calculation in neural nets." @default.
- W2997658081 created "2020-01-10" @default.
- W2997658081 creator A5022952297 @default.
- W2997658081 date "2020-01-01" @default.
- W2997658081 modified "2023-09-23" @default.
- W2997658081 title "Effect of Representation of Information in the Input of Deep Learning on Prediction Success" @default.
- W2997658081 cites W1508061413 @default.
- W2997658081 cites W1586335931 @default.
- W2997658081 cites W1596717185 @default.
- W2997658081 cites W2012079387 @default.
- W2997658081 cites W2030005958 @default.
- W2997658081 cites W2068527816 @default.
- W2997658081 cites W2073912178 @default.
- W2997658081 cites W2101420345 @default.
- W2997658081 cites W2117014758 @default.
- W2997658081 cites W2129413312 @default.
- W2997658081 cites W2137634615 @default.
- W2997658081 cites W2160664614 @default.
- W2997658081 cites W2172073485 @default.
- W2997658081 cites W2771497033 @default.
- W2997658081 cites W3121404909 @default.
- W2997658081 cites W3125462345 @default.
- W2997658081 cites W78204330 @default.
- W2997658081 doi "https://doi.org/10.1007/978-3-030-36178-5_60" @default.
- W2997658081 hasPublicationYear "2020" @default.
- W2997658081 type Work @default.
- W2997658081 sameAs 2997658081 @default.
- W2997658081 citedByCount "0" @default.
- W2997658081 crossrefType "book-chapter" @default.
- W2997658081 hasAuthorship W2997658081A5022952297 @default.
- W2997658081 hasConcept C105795698 @default.
- W2997658081 hasConcept C108583219 @default.
- W2997658081 hasConcept C111472728 @default.
- W2997658081 hasConcept C11413529 @default.
- W2997658081 hasConcept C119857082 @default.
- W2997658081 hasConcept C124101348 @default.
- W2997658081 hasConcept C138885662 @default.
- W2997658081 hasConcept C143724316 @default.
- W2997658081 hasConcept C151406439 @default.
- W2997658081 hasConcept C151730666 @default.
- W2997658081 hasConcept C153180895 @default.
- W2997658081 hasConcept C154945302 @default.
- W2997658081 hasConcept C17744445 @default.
- W2997658081 hasConcept C186370098 @default.
- W2997658081 hasConcept C189950617 @default.
- W2997658081 hasConcept C199539241 @default.
- W2997658081 hasConcept C25343380 @default.
- W2997658081 hasConcept C2776359362 @default.
- W2997658081 hasConcept C33923547 @default.
- W2997658081 hasConcept C41008148 @default.
- W2997658081 hasConcept C50644808 @default.
- W2997658081 hasConcept C78548338 @default.
- W2997658081 hasConcept C81081738 @default.
- W2997658081 hasConcept C86803240 @default.
- W2997658081 hasConcept C94625758 @default.
- W2997658081 hasConceptScore W2997658081C105795698 @default.
- W2997658081 hasConceptScore W2997658081C108583219 @default.
- W2997658081 hasConceptScore W2997658081C111472728 @default.
- W2997658081 hasConceptScore W2997658081C11413529 @default.
- W2997658081 hasConceptScore W2997658081C119857082 @default.
- W2997658081 hasConceptScore W2997658081C124101348 @default.
- W2997658081 hasConceptScore W2997658081C138885662 @default.
- W2997658081 hasConceptScore W2997658081C143724316 @default.
- W2997658081 hasConceptScore W2997658081C151406439 @default.
- W2997658081 hasConceptScore W2997658081C151730666 @default.
- W2997658081 hasConceptScore W2997658081C153180895 @default.
- W2997658081 hasConceptScore W2997658081C154945302 @default.
- W2997658081 hasConceptScore W2997658081C17744445 @default.
- W2997658081 hasConceptScore W2997658081C186370098 @default.
- W2997658081 hasConceptScore W2997658081C189950617 @default.
- W2997658081 hasConceptScore W2997658081C199539241 @default.
- W2997658081 hasConceptScore W2997658081C25343380 @default.
- W2997658081 hasConceptScore W2997658081C2776359362 @default.
- W2997658081 hasConceptScore W2997658081C33923547 @default.
- W2997658081 hasConceptScore W2997658081C41008148 @default.
- W2997658081 hasConceptScore W2997658081C50644808 @default.
- W2997658081 hasConceptScore W2997658081C78548338 @default.
- W2997658081 hasConceptScore W2997658081C81081738 @default.
- W2997658081 hasConceptScore W2997658081C86803240 @default.
- W2997658081 hasConceptScore W2997658081C94625758 @default.
- W2997658081 hasLocation W29976580811 @default.
- W2997658081 hasOpenAccess W2997658081 @default.
- W2997658081 hasPrimaryLocation W29976580811 @default.
- W2997658081 hasRelatedWork W1181176202 @default.
- W2997658081 hasRelatedWork W1828831198 @default.
- W2997658081 hasRelatedWork W1970751356 @default.
- W2997658081 hasRelatedWork W2116690118 @default.
- W2997658081 hasRelatedWork W2121839474 @default.
- W2997658081 hasRelatedWork W2188084331 @default.
- W2997658081 hasRelatedWork W2404774341 @default.
- W2997658081 hasRelatedWork W2584957437 @default.
- W2997658081 hasRelatedWork W2726756416 @default.
- W2997658081 hasRelatedWork W2900119323 @default.
- W2997658081 hasRelatedWork W2907250614 @default.
- W2997658081 hasRelatedWork W2982532627 @default.
- W2997658081 hasRelatedWork W3040211378 @default.
- W2997658081 hasRelatedWork W3082824554 @default.
- W2997658081 hasRelatedWork W3094364451 @default.
- W2997658081 hasRelatedWork W3185486575 @default.
- W2997658081 hasRelatedWork W3199019645 @default.