Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997659324> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2997659324 endingPage "656" @default.
- W2997659324 startingPage "654" @default.
- W2997659324 abstract "See the article Applications of Machine Learning Using Electronic Medical Records in Spine Surgery in Volume 16 on page 643." @default.
- W2997659324 created "2020-01-10" @default.
- W2997659324 creator A5028025707 @default.
- W2997659324 creator A5073987272 @default.
- W2997659324 date "2019-12-31" @default.
- W2997659324 modified "2023-10-17" @default.
- W2997659324 title "Data Mining in Spine Surgery: Leveraging Electronic Health Records for Machine Learning and Clinical Research" @default.
- W2997659324 cites W2122428334 @default.
- W2997659324 cites W2270764879 @default.
- W2997659324 cites W2471087760 @default.
- W2997659324 cites W2750079440 @default.
- W2997659324 cites W2763556273 @default.
- W2997659324 cites W2770261599 @default.
- W2997659324 cites W2789565832 @default.
- W2997659324 cites W2799372226 @default.
- W2997659324 cites W2805575462 @default.
- W2997659324 cites W2908201961 @default.
- W2997659324 cites W2945976633 @default.
- W2997659324 cites W2966977115 @default.
- W2997659324 cites W2979318050 @default.
- W2997659324 doi "https://doi.org/10.14245/ns.1938434.217" @default.
- W2997659324 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6944992" @default.
- W2997659324 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31905453" @default.
- W2997659324 hasPublicationYear "2019" @default.
- W2997659324 type Work @default.
- W2997659324 sameAs 2997659324 @default.
- W2997659324 citedByCount "8" @default.
- W2997659324 countsByYear W29976593242021 @default.
- W2997659324 countsByYear W29976593242022 @default.
- W2997659324 countsByYear W29976593242023 @default.
- W2997659324 crossrefType "journal-article" @default.
- W2997659324 hasAuthorship W2997659324A5028025707 @default.
- W2997659324 hasAuthorship W2997659324A5073987272 @default.
- W2997659324 hasBestOaLocation W29976593241 @default.
- W2997659324 hasConcept C160735492 @default.
- W2997659324 hasConcept C17744445 @default.
- W2997659324 hasConcept C199539241 @default.
- W2997659324 hasConcept C2522767166 @default.
- W2997659324 hasConcept C3019952477 @default.
- W2997659324 hasConcept C41008148 @default.
- W2997659324 hasConcept C71924100 @default.
- W2997659324 hasConceptScore W2997659324C160735492 @default.
- W2997659324 hasConceptScore W2997659324C17744445 @default.
- W2997659324 hasConceptScore W2997659324C199539241 @default.
- W2997659324 hasConceptScore W2997659324C2522767166 @default.
- W2997659324 hasConceptScore W2997659324C3019952477 @default.
- W2997659324 hasConceptScore W2997659324C41008148 @default.
- W2997659324 hasConceptScore W2997659324C71924100 @default.
- W2997659324 hasIssue "4" @default.
- W2997659324 hasLocation W29976593241 @default.
- W2997659324 hasLocation W29976593242 @default.
- W2997659324 hasLocation W29976593243 @default.
- W2997659324 hasLocation W29976593244 @default.
- W2997659324 hasLocation W29976593245 @default.
- W2997659324 hasOpenAccess W2997659324 @default.
- W2997659324 hasPrimaryLocation W29976593241 @default.
- W2997659324 hasRelatedWork W2521151792 @default.
- W2997659324 hasRelatedWork W2625625371 @default.
- W2997659324 hasRelatedWork W2737122700 @default.
- W2997659324 hasRelatedWork W2748952813 @default.
- W2997659324 hasRelatedWork W2810759579 @default.
- W2997659324 hasRelatedWork W2899084033 @default.
- W2997659324 hasRelatedWork W4225725093 @default.
- W2997659324 hasRelatedWork W4296902923 @default.
- W2997659324 hasRelatedWork W4385451637 @default.
- W2997659324 hasRelatedWork W4385568262 @default.
- W2997659324 hasVolume "16" @default.
- W2997659324 isParatext "false" @default.
- W2997659324 isRetracted "false" @default.
- W2997659324 magId "2997659324" @default.
- W2997659324 workType "article" @default.