Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997676850> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2997676850 endingPage "105458" @default.
- W2997676850 startingPage "105458" @default.
- W2997676850 abstract "Abstract Stringer-to-floor beam connections were reported as one of the most fatigue-prone details in riveted steel railway bridges. To detect stiffness degradation that results from the initiation and growth of fatigue cracks, an automated damage detection framework was proposed by the authors (Eftekhar Azam et al., 2019; Rageh et al., 2018). The proposed method relies on Proper Orthogonal Decomposition (POD) and Artificial Neural Networks (ANNs) to identify damage location and intensity under non-stationary, unknown train loads. Bridge computational models were used to simulate damage scenarios and for training the ANNs. Damage detection method efficiency and accuracy were shown to be significantly influenced by the level of modeling uncertainties (MUs). To investigate the applicability of the proposed framework to in-service bridges, a systematic analysis of the effect of MUs on the proposed POD-ANN framework was necessary. MU influence on the performance of the POD-ANN damage detection method was investigated and a new procedure for generating training data for ANNs was proposed. The procedure was based on synergizing Proper Orthogonal Modes (POMs) extracted from measured structural response and POMs calculated from the numerical model. The current study integrated numerical and field investigations. The main objective of the numerical investigation was to identify a robust damage feature independent of the level and location of assumed MUs. Results showed that Damage Location (DL) and Damage Intensity (DI) were detected with high accuracy for studied uncertainty cases; however, as expected, damage detection accuracy reduced as MU increased. A hybrid experimental-numerical approach was then implemented for the field investigation studies. This approach applied identified damage features from the numerical investigation to measurements from an in-service railway bridge to produce damage scenarios used to train the framework. MATLAB algorithms were developed that preprocessed field data and eliminated POM variations resulted from loading uncertainties. ANNs were trained and tested using the field strain estimated POMs from the hybrid approach and DL and DI results were obtained for the studied railway bridge under non-stationary, unknown train loads. These results show the promise of the POD-ANN method as a robust, real-time fatigue damage identification tool for steel railway bridges." @default.
- W2997676850 created "2020-01-10" @default.
- W2997676850 creator A5017554168 @default.
- W2997676850 creator A5038863364 @default.
- W2997676850 creator A5085948669 @default.
- W2997676850 date "2020-05-01" @default.
- W2997676850 modified "2023-10-04" @default.
- W2997676850 title "Steel railway bridge fatigue damage detection using numerical models and machine learning: Mitigating influence of modeling uncertainty" @default.
- W2997676850 cites W1539748019 @default.
- W2997676850 cites W1613359937 @default.
- W2997676850 cites W1969696351 @default.
- W2997676850 cites W1974745327 @default.
- W2997676850 cites W1984850136 @default.
- W2997676850 cites W2002096058 @default.
- W2997676850 cites W2013936256 @default.
- W2997676850 cites W2016529489 @default.
- W2997676850 cites W2037699430 @default.
- W2997676850 cites W2046440907 @default.
- W2997676850 cites W2063178646 @default.
- W2997676850 cites W2074465013 @default.
- W2997676850 cites W2076063813 @default.
- W2997676850 cites W2079112375 @default.
- W2997676850 cites W2080283874 @default.
- W2997676850 cites W2098099656 @default.
- W2997676850 cites W2098502158 @default.
- W2997676850 cites W2103496339 @default.
- W2997676850 cites W2108917711 @default.
- W2997676850 cites W2113129892 @default.
- W2997676850 cites W2146680806 @default.
- W2997676850 cites W2155658271 @default.
- W2997676850 cites W2294798173 @default.
- W2997676850 cites W2408443567 @default.
- W2997676850 cites W2463077271 @default.
- W2997676850 cites W2481671331 @default.
- W2997676850 cites W2510149721 @default.
- W2997676850 cites W2533243433 @default.
- W2997676850 cites W2548110547 @default.
- W2997676850 cites W2588902562 @default.
- W2997676850 cites W2611569523 @default.
- W2997676850 cites W2753284234 @default.
- W2997676850 cites W2789095401 @default.
- W2997676850 cites W2883418322 @default.
- W2997676850 cites W2898569331 @default.
- W2997676850 cites W2905267497 @default.
- W2997676850 cites W2907637027 @default.
- W2997676850 cites W2911546748 @default.
- W2997676850 doi "https://doi.org/10.1016/j.ijfatigue.2019.105458" @default.
- W2997676850 hasPublicationYear "2020" @default.
- W2997676850 type Work @default.
- W2997676850 sameAs 2997676850 @default.
- W2997676850 citedByCount "30" @default.
- W2997676850 countsByYear W29976768502020 @default.
- W2997676850 countsByYear W29976768502021 @default.
- W2997676850 countsByYear W29976768502022 @default.
- W2997676850 countsByYear W29976768502023 @default.
- W2997676850 crossrefType "journal-article" @default.
- W2997676850 hasAuthorship W2997676850A5017554168 @default.
- W2997676850 hasAuthorship W2997676850A5038863364 @default.
- W2997676850 hasAuthorship W2997676850A5085948669 @default.
- W2997676850 hasConcept C100776233 @default.
- W2997676850 hasConcept C126322002 @default.
- W2997676850 hasConcept C127413603 @default.
- W2997676850 hasConcept C41008148 @default.
- W2997676850 hasConcept C66938386 @default.
- W2997676850 hasConcept C71924100 @default.
- W2997676850 hasConcept C77595967 @default.
- W2997676850 hasConceptScore W2997676850C100776233 @default.
- W2997676850 hasConceptScore W2997676850C126322002 @default.
- W2997676850 hasConceptScore W2997676850C127413603 @default.
- W2997676850 hasConceptScore W2997676850C41008148 @default.
- W2997676850 hasConceptScore W2997676850C66938386 @default.
- W2997676850 hasConceptScore W2997676850C71924100 @default.
- W2997676850 hasConceptScore W2997676850C77595967 @default.
- W2997676850 hasFunder F4320310264 @default.
- W2997676850 hasLocation W29976768501 @default.
- W2997676850 hasOpenAccess W2997676850 @default.
- W2997676850 hasPrimaryLocation W29976768501 @default.
- W2997676850 hasRelatedWork W2349032744 @default.
- W2997676850 hasRelatedWork W2365133239 @default.
- W2997676850 hasRelatedWork W2367043156 @default.
- W2997676850 hasRelatedWork W2372469323 @default.
- W2997676850 hasRelatedWork W2379524216 @default.
- W2997676850 hasRelatedWork W2383961505 @default.
- W2997676850 hasRelatedWork W2384248468 @default.
- W2997676850 hasRelatedWork W2385757920 @default.
- W2997676850 hasRelatedWork W2393678086 @default.
- W2997676850 hasRelatedWork W575219528 @default.
- W2997676850 hasVolume "134" @default.
- W2997676850 isParatext "false" @default.
- W2997676850 isRetracted "false" @default.
- W2997676850 magId "2997676850" @default.
- W2997676850 workType "article" @default.