Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997712488> ?p ?o ?g. }
- W2997712488 abstract "Named entity recognition (NER) and relation extraction (RE) are two important tasks in information extraction and retrieval (IE & IR). Recent work has demonstrated that it is beneficial to learn these tasks jointly, which avoids the propagation of error inherent in pipeline-based systems and improves performance. However, state-of-the-art joint models typically rely on external natural language processing (NLP) tools, such as dependency parsers, limiting their usefulness to domains (e.g. news) where those tools perform well. The few neural, end-to-end models that have been proposed are trained almost completely from scratch. In this paper, we propose a neural, end-to-end model for jointly extracting entities and their relations which does not rely on external NLP tools and which integrates a large, pre-trained language model. Because the bulk of our model's parameters are pre-trained and we eschew recurrence for self-attention, our model is fast to train. On 5 datasets across 3 domains, our model matches or exceeds state-of-the-art performance, sometimes by a large margin." @default.
- W2997712488 created "2020-01-10" @default.
- W2997712488 creator A5041737762 @default.
- W2997712488 creator A5056168495 @default.
- W2997712488 creator A5071356121 @default.
- W2997712488 creator A5079147078 @default.
- W2997712488 creator A5083803249 @default.
- W2997712488 creator A5089186571 @default.
- W2997712488 date "2019-12-20" @default.
- W2997712488 modified "2023-09-25" @default.
- W2997712488 title "End-to-end Named Entity Recognition and Relation Extraction using Pre-trained Language Models" @default.
- W2997712488 cites W1566346388 @default.
- W2997712488 cites W1815076433 @default.
- W2997712488 cites W1941318214 @default.
- W2997712488 cites W2019772739 @default.
- W2997712488 cites W2041073071 @default.
- W2997712488 cites W2109555487 @default.
- W2997712488 cites W2129767020 @default.
- W2997712488 cites W2168041406 @default.
- W2997712488 cites W2169232658 @default.
- W2997712488 cites W2229639163 @default.
- W2997712488 cites W2251091211 @default.
- W2997712488 cites W2407338347 @default.
- W2997712488 cites W2552110825 @default.
- W2997712488 cites W2578454709 @default.
- W2997712488 cites W2579356637 @default.
- W2997712488 cites W2600659824 @default.
- W2997712488 cites W2610332124 @default.
- W2997712488 cites W2759056771 @default.
- W2997712488 cites W2768282280 @default.
- W2997712488 cites W2799125718 @default.
- W2997712488 cites W2888597155 @default.
- W2997712488 cites W2899771611 @default.
- W2997712488 cites W2907265599 @default.
- W2997712488 cites W2911489562 @default.
- W2997712488 cites W2912351236 @default.
- W2997712488 cites W2946628371 @default.
- W2997712488 cites W2949202705 @default.
- W2997712488 cites W2950813464 @default.
- W2997712488 cites W2955483668 @default.
- W2997712488 cites W2963341956 @default.
- W2997712488 cites W2963602416 @default.
- W2997712488 cites W2971258845 @default.
- W2997712488 doi "https://doi.org/10.48550/arxiv.1912.13415" @default.
- W2997712488 hasPublicationYear "2019" @default.
- W2997712488 type Work @default.
- W2997712488 sameAs 2997712488 @default.
- W2997712488 citedByCount "7" @default.
- W2997712488 countsByYear W29977124882020 @default.
- W2997712488 countsByYear W29977124882021 @default.
- W2997712488 countsByYear W29977124882022 @default.
- W2997712488 crossrefType "posted-content" @default.
- W2997712488 hasAuthorship W2997712488A5041737762 @default.
- W2997712488 hasAuthorship W2997712488A5056168495 @default.
- W2997712488 hasAuthorship W2997712488A5071356121 @default.
- W2997712488 hasAuthorship W2997712488A5079147078 @default.
- W2997712488 hasAuthorship W2997712488A5083803249 @default.
- W2997712488 hasAuthorship W2997712488A5089186571 @default.
- W2997712488 hasBestOaLocation W29977124881 @default.
- W2997712488 hasConcept C111919701 @default.
- W2997712488 hasConcept C119857082 @default.
- W2997712488 hasConcept C124101348 @default.
- W2997712488 hasConcept C137293760 @default.
- W2997712488 hasConcept C153604712 @default.
- W2997712488 hasConcept C154945302 @default.
- W2997712488 hasConcept C162324750 @default.
- W2997712488 hasConcept C186644900 @default.
- W2997712488 hasConcept C187736073 @default.
- W2997712488 hasConcept C195324797 @default.
- W2997712488 hasConcept C195807954 @default.
- W2997712488 hasConcept C19768560 @default.
- W2997712488 hasConcept C199360897 @default.
- W2997712488 hasConcept C204321447 @default.
- W2997712488 hasConcept C25343380 @default.
- W2997712488 hasConcept C2779135771 @default.
- W2997712488 hasConcept C2780451532 @default.
- W2997712488 hasConcept C2781235140 @default.
- W2997712488 hasConcept C28490314 @default.
- W2997712488 hasConcept C41008148 @default.
- W2997712488 hasConcept C43521106 @default.
- W2997712488 hasConcept C74296488 @default.
- W2997712488 hasConcept C774472 @default.
- W2997712488 hasConceptScore W2997712488C111919701 @default.
- W2997712488 hasConceptScore W2997712488C119857082 @default.
- W2997712488 hasConceptScore W2997712488C124101348 @default.
- W2997712488 hasConceptScore W2997712488C137293760 @default.
- W2997712488 hasConceptScore W2997712488C153604712 @default.
- W2997712488 hasConceptScore W2997712488C154945302 @default.
- W2997712488 hasConceptScore W2997712488C162324750 @default.
- W2997712488 hasConceptScore W2997712488C186644900 @default.
- W2997712488 hasConceptScore W2997712488C187736073 @default.
- W2997712488 hasConceptScore W2997712488C195324797 @default.
- W2997712488 hasConceptScore W2997712488C195807954 @default.
- W2997712488 hasConceptScore W2997712488C19768560 @default.
- W2997712488 hasConceptScore W2997712488C199360897 @default.
- W2997712488 hasConceptScore W2997712488C204321447 @default.
- W2997712488 hasConceptScore W2997712488C25343380 @default.
- W2997712488 hasConceptScore W2997712488C2779135771 @default.
- W2997712488 hasConceptScore W2997712488C2780451532 @default.
- W2997712488 hasConceptScore W2997712488C2781235140 @default.