Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997731800> ?p ?o ?g. }
- W2997731800 endingPage "232" @default.
- W2997731800 startingPage "232" @default.
- W2997731800 abstract "Ground surface settlement forecasting in the process of tunnel construction is one of the most important techniques towards sustainable city development and preventing serious damages, such as landscape collapse. It is evident that modern artificial intelligence (AI) models, such as artificial neural network, extreme learning machine, and support vector regression, are capable of providing reliable forecasting results for tunnel surface settlement. However, two limitations exist for the current forecasting techniques. First, the data provided by the construction company are usually univariate (i.e., containing only the settlement data). Second, the demand of tunnel surface settlement is immediate after the construction process begins. The number of training data samples is limited. Targeting at the above two limitations, in this study, a novel ensemble machine learning model is proposed to forecast tunnel surface settlement using univariate short period of real-world tunnel settlement data. The proposed Adaboost.RT framework fully utilizes existing data points with three base machine learning models and iteratively updates hyperparameters using current surface point locations. Experimental results show that compared with existing machine learning techniques and algorithms, the proposed ensemble learning method provides a higher prediction accuracy with acceptable computational efficiency." @default.
- W2997731800 created "2020-01-10" @default.
- W2997731800 creator A5018347033 @default.
- W2997731800 creator A5022647446 @default.
- W2997731800 creator A5039611523 @default.
- W2997731800 creator A5074514063 @default.
- W2997731800 date "2019-12-26" @default.
- W2997731800 modified "2023-10-16" @default.
- W2997731800 title "Tunnel Surface Settlement Forecasting with Ensemble Learning" @default.
- W2997731800 cites W1566332026 @default.
- W2997731800 cites W1975829460 @default.
- W2997731800 cites W1980067289 @default.
- W2997731800 cites W1986392424 @default.
- W2997731800 cites W1988790447 @default.
- W2997731800 cites W1990167516 @default.
- W2997731800 cites W1991155410 @default.
- W2997731800 cites W2005357680 @default.
- W2997731800 cites W2056275393 @default.
- W2997731800 cites W2341910059 @default.
- W2997731800 cites W2380664990 @default.
- W2997731800 cites W2548296896 @default.
- W2997731800 cites W2560370080 @default.
- W2997731800 cites W2740436868 @default.
- W2997731800 cites W2743481925 @default.
- W2997731800 cites W2767547753 @default.
- W2997731800 cites W2804369244 @default.
- W2997731800 cites W2804841412 @default.
- W2997731800 cites W2806801752 @default.
- W2997731800 cites W2895180337 @default.
- W2997731800 cites W2896365146 @default.
- W2997731800 cites W2898322183 @default.
- W2997731800 cites W2899934327 @default.
- W2997731800 cites W2911935588 @default.
- W2997731800 cites W2940368890 @default.
- W2997731800 cites W2972751055 @default.
- W2997731800 cites W2982252459 @default.
- W2997731800 doi "https://doi.org/10.3390/su12010232" @default.
- W2997731800 hasPublicationYear "2019" @default.
- W2997731800 type Work @default.
- W2997731800 sameAs 2997731800 @default.
- W2997731800 citedByCount "23" @default.
- W2997731800 countsByYear W29977318002020 @default.
- W2997731800 countsByYear W29977318002021 @default.
- W2997731800 countsByYear W29977318002022 @default.
- W2997731800 countsByYear W29977318002023 @default.
- W2997731800 crossrefType "journal-article" @default.
- W2997731800 hasAuthorship W2997731800A5018347033 @default.
- W2997731800 hasAuthorship W2997731800A5022647446 @default.
- W2997731800 hasAuthorship W2997731800A5039611523 @default.
- W2997731800 hasAuthorship W2997731800A5074514063 @default.
- W2997731800 hasBestOaLocation W29977318001 @default.
- W2997731800 hasConcept C111919701 @default.
- W2997731800 hasConcept C119857082 @default.
- W2997731800 hasConcept C12267149 @default.
- W2997731800 hasConcept C127413603 @default.
- W2997731800 hasConcept C136764020 @default.
- W2997731800 hasConcept C141404830 @default.
- W2997731800 hasConcept C145097563 @default.
- W2997731800 hasConcept C154945302 @default.
- W2997731800 hasConcept C161584116 @default.
- W2997731800 hasConcept C199163554 @default.
- W2997731800 hasConcept C2777063073 @default.
- W2997731800 hasConcept C41008148 @default.
- W2997731800 hasConcept C45942800 @default.
- W2997731800 hasConcept C50644808 @default.
- W2997731800 hasConcept C8642999 @default.
- W2997731800 hasConcept C98045186 @default.
- W2997731800 hasConceptScore W2997731800C111919701 @default.
- W2997731800 hasConceptScore W2997731800C119857082 @default.
- W2997731800 hasConceptScore W2997731800C12267149 @default.
- W2997731800 hasConceptScore W2997731800C127413603 @default.
- W2997731800 hasConceptScore W2997731800C136764020 @default.
- W2997731800 hasConceptScore W2997731800C141404830 @default.
- W2997731800 hasConceptScore W2997731800C145097563 @default.
- W2997731800 hasConceptScore W2997731800C154945302 @default.
- W2997731800 hasConceptScore W2997731800C161584116 @default.
- W2997731800 hasConceptScore W2997731800C199163554 @default.
- W2997731800 hasConceptScore W2997731800C2777063073 @default.
- W2997731800 hasConceptScore W2997731800C41008148 @default.
- W2997731800 hasConceptScore W2997731800C45942800 @default.
- W2997731800 hasConceptScore W2997731800C50644808 @default.
- W2997731800 hasConceptScore W2997731800C8642999 @default.
- W2997731800 hasConceptScore W2997731800C98045186 @default.
- W2997731800 hasIssue "1" @default.
- W2997731800 hasLocation W29977318001 @default.
- W2997731800 hasLocation W29977318002 @default.
- W2997731800 hasOpenAccess W2997731800 @default.
- W2997731800 hasPrimaryLocation W29977318001 @default.
- W2997731800 hasRelatedWork W1987859285 @default.
- W2997731800 hasRelatedWork W1996541855 @default.
- W2997731800 hasRelatedWork W2101819884 @default.
- W2997731800 hasRelatedWork W2520775273 @default.
- W2997731800 hasRelatedWork W3210229324 @default.
- W2997731800 hasRelatedWork W4226036692 @default.
- W2997731800 hasRelatedWork W4282839226 @default.
- W2997731800 hasRelatedWork W4283697347 @default.
- W2997731800 hasRelatedWork W4285046548 @default.
- W2997731800 hasRelatedWork W4375930479 @default.