Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997752693> ?p ?o ?g. }
- W2997752693 endingPage "24" @default.
- W2997752693 startingPage "14" @default.
- W2997752693 abstract "Application of solar energy into ship power systems has been increasingly drawing attention. Accordingly, an accurate prediction of solar power plays a significant role in the shipboard power system operation. However, a photovoltaic (PV) generation system on the shipboard, different from the one on land, has to suffer more dramatic power fluctuations caused by weather variations and motions of the ships, which increase the uncertainty of PV power outputs. This paper proposes a hybrid ensemble method for optimal interval prediction of onboard solar power based on a stochastic ship motion model. A set of machine learning techniques are combined together with the particle swarm optimization (PSO) to constitute a hybrid forecasting model, including a back propagation neural network (BPNN), a radial basis function neural network (RBFNN), an extreme learning machine (ELM) and an Elman neural network. Furthermore, for different learning algorithms, an ensemble strategy is employed to reduce the forecasting error and various environmental variables along with ship moving and rolling impacts are taken into account. The developed model has been practically tested on a power system on a large oil tanker penetrated with PV energy and the data along the typical navigation route from Dalian in China to Aden in Yemen are selected for solar power prediction. The simulation results demonstrate its high accuracy, which provides a reliable reference for ship power system operators to achieve a better energy management." @default.
- W2997752693 created "2020-01-10" @default.
- W2997752693 creator A5013947981 @default.
- W2997752693 creator A5029944183 @default.
- W2997752693 creator A5042480078 @default.
- W2997752693 creator A5051927490 @default.
- W2997752693 creator A5069043240 @default.
- W2997752693 creator A5091343227 @default.
- W2997752693 date "2021-01-01" @default.
- W2997752693 modified "2023-10-16" @default.
- W2997752693 title "A Hybrid Ensemble Model for Interval Prediction of Solar Power Output in Ship Onboard Power Systems" @default.
- W2997752693 cites W1963682480 @default.
- W2997752693 cites W1966080301 @default.
- W2997752693 cites W1982870152 @default.
- W2997752693 cites W2014454218 @default.
- W2997752693 cites W2026131661 @default.
- W2997752693 cites W2035411179 @default.
- W2997752693 cites W2050204197 @default.
- W2997752693 cites W2061317708 @default.
- W2997752693 cites W2076077531 @default.
- W2997752693 cites W2115294291 @default.
- W2997752693 cites W2152195021 @default.
- W2997752693 cites W2173259274 @default.
- W2997752693 cites W2179553404 @default.
- W2997752693 cites W2284910918 @default.
- W2997752693 cites W2317094831 @default.
- W2997752693 cites W2327473694 @default.
- W2997752693 cites W2343702657 @default.
- W2997752693 cites W2345857928 @default.
- W2997752693 cites W2404641003 @default.
- W2997752693 cites W2469734051 @default.
- W2997752693 cites W2492811885 @default.
- W2997752693 cites W2519051700 @default.
- W2997752693 cites W2520558856 @default.
- W2997752693 cites W2523886588 @default.
- W2997752693 cites W2569349941 @default.
- W2997752693 cites W2587129393 @default.
- W2997752693 cites W2607339923 @default.
- W2997752693 cites W2736385547 @default.
- W2997752693 cites W2737418348 @default.
- W2997752693 cites W2748065362 @default.
- W2997752693 cites W2759111342 @default.
- W2997752693 cites W2767903046 @default.
- W2997752693 cites W2783069604 @default.
- W2997752693 cites W2792326773 @default.
- W2997752693 cites W2801973365 @default.
- W2997752693 cites W2807966350 @default.
- W2997752693 cites W2921934006 @default.
- W2997752693 cites W322083849 @default.
- W2997752693 doi "https://doi.org/10.1109/tste.2019.2963270" @default.
- W2997752693 hasPublicationYear "2021" @default.
- W2997752693 type Work @default.
- W2997752693 sameAs 2997752693 @default.
- W2997752693 citedByCount "38" @default.
- W2997752693 countsByYear W29977526932020 @default.
- W2997752693 countsByYear W29977526932021 @default.
- W2997752693 countsByYear W29977526932022 @default.
- W2997752693 countsByYear W29977526932023 @default.
- W2997752693 crossrefType "journal-article" @default.
- W2997752693 hasAuthorship W2997752693A5013947981 @default.
- W2997752693 hasAuthorship W2997752693A5029944183 @default.
- W2997752693 hasAuthorship W2997752693A5042480078 @default.
- W2997752693 hasAuthorship W2997752693A5051927490 @default.
- W2997752693 hasAuthorship W2997752693A5069043240 @default.
- W2997752693 hasAuthorship W2997752693A5091343227 @default.
- W2997752693 hasConcept C114614502 @default.
- W2997752693 hasConcept C119599485 @default.
- W2997752693 hasConcept C119857082 @default.
- W2997752693 hasConcept C121332964 @default.
- W2997752693 hasConcept C127413603 @default.
- W2997752693 hasConcept C154945302 @default.
- W2997752693 hasConcept C163258240 @default.
- W2997752693 hasConcept C2777618391 @default.
- W2997752693 hasConcept C2778067643 @default.
- W2997752693 hasConcept C2780150128 @default.
- W2997752693 hasConcept C33923547 @default.
- W2997752693 hasConcept C41008148 @default.
- W2997752693 hasConcept C41291067 @default.
- W2997752693 hasConcept C50644808 @default.
- W2997752693 hasConcept C62520636 @default.
- W2997752693 hasConcept C85617194 @default.
- W2997752693 hasConcept C86155754 @default.
- W2997752693 hasConcept C89227174 @default.
- W2997752693 hasConceptScore W2997752693C114614502 @default.
- W2997752693 hasConceptScore W2997752693C119599485 @default.
- W2997752693 hasConceptScore W2997752693C119857082 @default.
- W2997752693 hasConceptScore W2997752693C121332964 @default.
- W2997752693 hasConceptScore W2997752693C127413603 @default.
- W2997752693 hasConceptScore W2997752693C154945302 @default.
- W2997752693 hasConceptScore W2997752693C163258240 @default.
- W2997752693 hasConceptScore W2997752693C2777618391 @default.
- W2997752693 hasConceptScore W2997752693C2778067643 @default.
- W2997752693 hasConceptScore W2997752693C2780150128 @default.
- W2997752693 hasConceptScore W2997752693C33923547 @default.
- W2997752693 hasConceptScore W2997752693C41008148 @default.
- W2997752693 hasConceptScore W2997752693C41291067 @default.
- W2997752693 hasConceptScore W2997752693C50644808 @default.
- W2997752693 hasConceptScore W2997752693C62520636 @default.