Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997804345> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2997804345 endingPage "661" @default.
- W2997804345 startingPage "653" @default.
- W2997804345 abstract "This study presents a convolutional neural network-based drone classification method. The primary criterion for a high-fidelity neural network-based classification is a real dataset of large size and diversity for training. The first goal of the study was to create a large database of micro-Doppler spectrogram images of in-flight drones and birds. Two separate datasets with the same images have been created, one with RGB images and others with greyscale images. The RGB dataset was used for GoogLeNet architecture-based training. The greyscale dataset was used for training with a series of architecture developed during this study. Each dataset was further divided into two categories, one with four classes (drone, bird, clutter and noise) and the other with two classes (drone and non-drone). During training, 20% of the dataset has been used as a validation set. After the completion of training, the models were tested with previously unseen and unlabelled sets of data. The validation and testing accuracy for the developed series network have been found to be 99.6 and 94.4%, respectively, for four classes and 99.3 and 98.3%, respectively, for two classes. The GoogLenet based model showed both validation and testing accuracies to be around 99% for all the cases." @default.
- W2997804345 created "2020-01-10" @default.
- W2997804345 creator A5003695333 @default.
- W2997804345 creator A5014817145 @default.
- W2997804345 date "2020-05-01" @default.
- W2997804345 modified "2023-10-17" @default.
- W2997804345 title "Classification of drones and birds using convolutional neural networks applied to radar micro‐Doppler spectrogram images" @default.
- W2997804345 cites W2014534232 @default.
- W2997804345 cites W2185914885 @default.
- W2997804345 cites W2194775991 @default.
- W2997804345 cites W2242223225 @default.
- W2997804345 cites W2550347528 @default.
- W2997804345 cites W2767602888 @default.
- W2997804345 cites W2770967835 @default.
- W2997804345 cites W2793655483 @default.
- W2997804345 cites W2796574722 @default.
- W2997804345 cites W2797821788 @default.
- W2997804345 cites W2887807614 @default.
- W2997804345 cites W2901567850 @default.
- W2997804345 cites W4234698323 @default.
- W2997804345 doi "https://doi.org/10.1049/iet-rsn.2019.0493" @default.
- W2997804345 hasPublicationYear "2020" @default.
- W2997804345 type Work @default.
- W2997804345 sameAs 2997804345 @default.
- W2997804345 citedByCount "36" @default.
- W2997804345 countsByYear W29978043452020 @default.
- W2997804345 countsByYear W29978043452021 @default.
- W2997804345 countsByYear W29978043452022 @default.
- W2997804345 countsByYear W29978043452023 @default.
- W2997804345 crossrefType "journal-article" @default.
- W2997804345 hasAuthorship W2997804345A5003695333 @default.
- W2997804345 hasAuthorship W2997804345A5014817145 @default.
- W2997804345 hasBestOaLocation W29978043451 @default.
- W2997804345 hasConcept C121332964 @default.
- W2997804345 hasConcept C1276947 @default.
- W2997804345 hasConcept C142757262 @default.
- W2997804345 hasConcept C153180895 @default.
- W2997804345 hasConcept C154945302 @default.
- W2997804345 hasConcept C205649164 @default.
- W2997804345 hasConcept C2778559676 @default.
- W2997804345 hasConcept C31972630 @default.
- W2997804345 hasConcept C41008148 @default.
- W2997804345 hasConcept C45273575 @default.
- W2997804345 hasConcept C54355233 @default.
- W2997804345 hasConcept C554190296 @default.
- W2997804345 hasConcept C59519942 @default.
- W2997804345 hasConcept C62649853 @default.
- W2997804345 hasConcept C76155785 @default.
- W2997804345 hasConcept C81363708 @default.
- W2997804345 hasConcept C86803240 @default.
- W2997804345 hasConceptScore W2997804345C121332964 @default.
- W2997804345 hasConceptScore W2997804345C1276947 @default.
- W2997804345 hasConceptScore W2997804345C142757262 @default.
- W2997804345 hasConceptScore W2997804345C153180895 @default.
- W2997804345 hasConceptScore W2997804345C154945302 @default.
- W2997804345 hasConceptScore W2997804345C205649164 @default.
- W2997804345 hasConceptScore W2997804345C2778559676 @default.
- W2997804345 hasConceptScore W2997804345C31972630 @default.
- W2997804345 hasConceptScore W2997804345C41008148 @default.
- W2997804345 hasConceptScore W2997804345C45273575 @default.
- W2997804345 hasConceptScore W2997804345C54355233 @default.
- W2997804345 hasConceptScore W2997804345C554190296 @default.
- W2997804345 hasConceptScore W2997804345C59519942 @default.
- W2997804345 hasConceptScore W2997804345C62649853 @default.
- W2997804345 hasConceptScore W2997804345C76155785 @default.
- W2997804345 hasConceptScore W2997804345C81363708 @default.
- W2997804345 hasConceptScore W2997804345C86803240 @default.
- W2997804345 hasFunder F4320334632 @default.
- W2997804345 hasIssue "5" @default.
- W2997804345 hasLocation W29978043451 @default.
- W2997804345 hasLocation W29978043452 @default.
- W2997804345 hasOpenAccess W2997804345 @default.
- W2997804345 hasPrimaryLocation W29978043451 @default.
- W2997804345 hasRelatedWork W1968181177 @default.
- W2997804345 hasRelatedWork W2901567850 @default.
- W2997804345 hasRelatedWork W2911971002 @default.
- W2997804345 hasRelatedWork W2972474169 @default.
- W2997804345 hasRelatedWork W3117012270 @default.
- W2997804345 hasRelatedWork W4225401838 @default.
- W2997804345 hasRelatedWork W4281764662 @default.
- W2997804345 hasRelatedWork W4281775233 @default.
- W2997804345 hasRelatedWork W4308080442 @default.
- W2997804345 hasRelatedWork W4312285041 @default.
- W2997804345 hasVolume "14" @default.
- W2997804345 isParatext "false" @default.
- W2997804345 isRetracted "false" @default.
- W2997804345 magId "2997804345" @default.
- W2997804345 workType "article" @default.