Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997805561> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2997805561 abstract "We develop a theory of Frobenius functors for symmetric tensor categories (STC) $mathcal{C}$ over a field $bf k$ of characteristic $p$, and give its applications to classification of such categories. Namely, we define a twisted-linear symmetric monoidal functor $F: mathcal{C}to mathcal{C}boxtimes {rm Ver}_p$, where ${rm Ver}_p$ is the Verlinde category (the semisimplification of ${rm Rep}_{bf k}(mathbb{Z}/p)$). This generalizes the usual Frobenius twist functor in modular representation theory and also one defined in arXiv:1503.01492, where it is used to show that if $mathcal{C}$ is finite and semisimple then it admits a fiber functor to ${rm Ver}_p$. The main new feature is that when $mathcal{C}$ is not semisimple, $F$ need not be left or right exact, and in fact this lack of exactness is the main obstruction to the existence of a fiber functor $mathcal{C}to {rm Ver}_p$. We show, however, that there is a 6-periodic long exact sequence which is a replacement for the exactness of $F$, and use it to show that for categories with finitely many simple objects $F$ does not increase the Frobenius-Perron dimension. We also define the notion of a Frobenius exact category, which is a STC on which $F$ is exact, and define the canonical maximal Frobenius exact subcategory $mathcal{C}_{rm ex}$ inside any STC $mathcal{C}$ with finitely many simple objects. Namely, this is the subcategory of all objects whose Frobenius-Perron dimension is preserved by $F$. We prove that a finite STC is Frobenius exact if and only if it admits a (necessarily unique) fiber functor to ${rm Ver}_p$. We also show that a sufficiently large power of $F$ lands in $mathcal{C}_{rm ex}$. Also, in characteristic 2 we introduce a slightly weaker notion of an almost Frobenius exact category and show that a STC with Chevalley property is (almost) Frobenius exact." @default.
- W2997805561 created "2020-01-10" @default.
- W2997805561 creator A5010889327 @default.
- W2997805561 creator A5075556491 @default.
- W2997805561 date "2019-12-30" @default.
- W2997805561 modified "2023-09-27" @default.
- W2997805561 title "On the Frobenius functor for symmetric tensor categories in positive characteristic" @default.
- W2997805561 cites W1503154552 @default.
- W2997805561 cites W1579486099 @default.
- W2997805561 cites W1642516982 @default.
- W2997805561 cites W2000206862 @default.
- W2997805561 cites W2087218196 @default.
- W2997805561 cites W2134984950 @default.
- W2997805561 cites W2152951951 @default.
- W2997805561 cites W2297748648 @default.
- W2997805561 cites W2569141688 @default.
- W2997805561 cites W2606175359 @default.
- W2997805561 cites W2783523322 @default.
- W2997805561 cites W2907673199 @default.
- W2997805561 cites W2936221081 @default.
- W2997805561 cites W2950356009 @default.
- W2997805561 cites W2963095641 @default.
- W2997805561 cites W2963124547 @default.
- W2997805561 cites W3035005123 @default.
- W2997805561 cites W3090827345 @default.
- W2997805561 cites W3099268293 @default.
- W2997805561 cites W585598466 @default.
- W2997805561 cites W2963335785 @default.
- W2997805561 hasPublicationYear "2019" @default.
- W2997805561 type Work @default.
- W2997805561 sameAs 2997805561 @default.
- W2997805561 citedByCount "3" @default.
- W2997805561 countsByYear W29978055612019 @default.
- W2997805561 countsByYear W29978055612020 @default.
- W2997805561 countsByYear W29978055612021 @default.
- W2997805561 crossrefType "posted-content" @default.
- W2997805561 hasAuthorship W2997805561A5010889327 @default.
- W2997805561 hasAuthorship W2997805561A5075556491 @default.
- W2997805561 hasConcept C111472728 @default.
- W2997805561 hasConcept C114614502 @default.
- W2997805561 hasConcept C118615104 @default.
- W2997805561 hasConcept C136119220 @default.
- W2997805561 hasConcept C138885662 @default.
- W2997805561 hasConcept C14394260 @default.
- W2997805561 hasConcept C155281189 @default.
- W2997805561 hasConcept C155996607 @default.
- W2997805561 hasConcept C156772000 @default.
- W2997805561 hasConcept C180950851 @default.
- W2997805561 hasConcept C202444582 @default.
- W2997805561 hasConcept C2780586882 @default.
- W2997805561 hasConcept C2780617661 @default.
- W2997805561 hasConcept C33676613 @default.
- W2997805561 hasConcept C33923547 @default.
- W2997805561 hasConceptScore W2997805561C111472728 @default.
- W2997805561 hasConceptScore W2997805561C114614502 @default.
- W2997805561 hasConceptScore W2997805561C118615104 @default.
- W2997805561 hasConceptScore W2997805561C136119220 @default.
- W2997805561 hasConceptScore W2997805561C138885662 @default.
- W2997805561 hasConceptScore W2997805561C14394260 @default.
- W2997805561 hasConceptScore W2997805561C155281189 @default.
- W2997805561 hasConceptScore W2997805561C155996607 @default.
- W2997805561 hasConceptScore W2997805561C156772000 @default.
- W2997805561 hasConceptScore W2997805561C180950851 @default.
- W2997805561 hasConceptScore W2997805561C202444582 @default.
- W2997805561 hasConceptScore W2997805561C2780586882 @default.
- W2997805561 hasConceptScore W2997805561C2780617661 @default.
- W2997805561 hasConceptScore W2997805561C33676613 @default.
- W2997805561 hasConceptScore W2997805561C33923547 @default.
- W2997805561 hasLocation W29978055611 @default.
- W2997805561 hasOpenAccess W2997805561 @default.
- W2997805561 hasPrimaryLocation W29978055611 @default.
- W2997805561 hasRelatedWork W1488915483 @default.
- W2997805561 hasRelatedWork W1561168842 @default.
- W2997805561 hasRelatedWork W1636597499 @default.
- W2997805561 hasRelatedWork W174003654 @default.
- W2997805561 hasRelatedWork W1787366169 @default.
- W2997805561 hasRelatedWork W2001629832 @default.
- W2997805561 hasRelatedWork W2029727499 @default.
- W2997805561 hasRelatedWork W2114583872 @default.
- W2997805561 hasRelatedWork W2155091916 @default.
- W2997805561 hasRelatedWork W2408683049 @default.
- W2997805561 hasRelatedWork W2767869470 @default.
- W2997805561 hasRelatedWork W2909250272 @default.
- W2997805561 hasRelatedWork W2951948663 @default.
- W2997805561 hasRelatedWork W2963124547 @default.
- W2997805561 hasRelatedWork W2980119816 @default.
- W2997805561 hasRelatedWork W3092487872 @default.
- W2997805561 hasRelatedWork W3104376094 @default.
- W2997805561 hasRelatedWork W3179298479 @default.
- W2997805561 hasRelatedWork W3195615262 @default.
- W2997805561 hasRelatedWork W2187365712 @default.
- W2997805561 isParatext "false" @default.
- W2997805561 isRetracted "false" @default.
- W2997805561 magId "2997805561" @default.
- W2997805561 workType "article" @default.