Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997843383> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2997843383 abstract "Implement reinforcement learning techniques and algorithms with the help of real-world examples and recipesKey FeaturesUse PyTorch 1.x to design and build self-learning artificial intelligence (AI) modelsImplement RL algorithms to solve control and optimization challenges faced by data scientists todayApply modern RL libraries to simulate a controlled environment for your projectsBook DescriptionReinforcement learning (RL) is a branch of machine learning that has gained popularity in recent times. It allows you to train AI models that learn from their own actions and optimize their behavior. PyTorch has also emerged as the preferred tool for training RL models because of its efficiency and ease of use.With this book, you'll explore the important RL concepts and the implementation of algorithms in PyTorch 1.x. The recipes in the book, along with real-world examples, will help you master various RL techniques, such as dynamic programming, Monte Carlo simulations, temporal difference, and Q-learning. You'll also gain insights into industry-specific applications of these techniques. Later chapters will guide you through solving problems such as the multi-armed bandit problem and the cartpole problem using the multi-armed bandit algorithm and function approximation. You'll also learn how to use Deep Q-Networks to complete Atari games, along with how to effectively implement policy gradients. Finally, you'll discover how RL techniques are applied to Blackjack, Gridworld environments, internet advertising, and the Flappy Bird game.By the end of this book, you'll have developed the skills you need to implement popular RL algorithms and use RL techniques to solve real-world problems.What you will learnUse Q-learning and the state–action–reward–state–action (SARSA) algorithm to solve various Gridworld problemsDevelop a multi-armed bandit algorithm to optimize display advertisingScale up learning and control processes using Deep Q-NetworksSimulate Markov Decision Processes, OpenAI Gym environments, and other common control problemsSelect and build RL models, evaluate their performance, and optimize and deploy themUse policy gradient methods to solve continuous RL problemsWho this book is forMachine learning engineers, data scientists and AI researchers looking for quick solutions to different reinforcement learning problems will find this book useful. Although prior knowledge of machine learning concepts is required, experience with PyTorch will be useful but not necessary." @default.
- W2997843383 created "2020-01-10" @default.
- W2997843383 creator A5001608625 @default.
- W2997843383 date "2019-01-01" @default.
- W2997843383 modified "2023-09-23" @default.
- W2997843383 title "PyTorch 1.x Reinforcement Learning Cookbook" @default.
- W2997843383 hasPublicationYear "2019" @default.
- W2997843383 type Work @default.
- W2997843383 sameAs 2997843383 @default.
- W2997843383 citedByCount "0" @default.
- W2997843383 crossrefType "book" @default.
- W2997843383 hasAuthorship W2997843383A5001608625 @default.
- W2997843383 hasConcept C108583219 @default.
- W2997843383 hasConcept C119857082 @default.
- W2997843383 hasConcept C14036430 @default.
- W2997843383 hasConcept C154945302 @default.
- W2997843383 hasConcept C15744967 @default.
- W2997843383 hasConcept C26517878 @default.
- W2997843383 hasConcept C2780586970 @default.
- W2997843383 hasConcept C38652104 @default.
- W2997843383 hasConcept C41008148 @default.
- W2997843383 hasConcept C77805123 @default.
- W2997843383 hasConcept C78458016 @default.
- W2997843383 hasConcept C86803240 @default.
- W2997843383 hasConcept C97541855 @default.
- W2997843383 hasConceptScore W2997843383C108583219 @default.
- W2997843383 hasConceptScore W2997843383C119857082 @default.
- W2997843383 hasConceptScore W2997843383C14036430 @default.
- W2997843383 hasConceptScore W2997843383C154945302 @default.
- W2997843383 hasConceptScore W2997843383C15744967 @default.
- W2997843383 hasConceptScore W2997843383C26517878 @default.
- W2997843383 hasConceptScore W2997843383C2780586970 @default.
- W2997843383 hasConceptScore W2997843383C38652104 @default.
- W2997843383 hasConceptScore W2997843383C41008148 @default.
- W2997843383 hasConceptScore W2997843383C77805123 @default.
- W2997843383 hasConceptScore W2997843383C78458016 @default.
- W2997843383 hasConceptScore W2997843383C86803240 @default.
- W2997843383 hasConceptScore W2997843383C97541855 @default.
- W2997843383 hasLocation W29978433831 @default.
- W2997843383 hasOpenAccess W2997843383 @default.
- W2997843383 hasPrimaryLocation W29978433831 @default.
- W2997843383 hasRelatedWork W1479829755 @default.
- W2997843383 hasRelatedWork W1604368195 @default.
- W2997843383 hasRelatedWork W1981824392 @default.
- W2997843383 hasRelatedWork W2083211305 @default.
- W2997843383 hasRelatedWork W2184654423 @default.
- W2997843383 hasRelatedWork W2296023730 @default.
- W2997843383 hasRelatedWork W2525796107 @default.
- W2997843383 hasRelatedWork W2905140178 @default.
- W2997843383 hasRelatedWork W2926433243 @default.
- W2997843383 hasRelatedWork W2931755173 @default.
- W2997843383 hasRelatedWork W2943256723 @default.
- W2997843383 hasRelatedWork W2964053787 @default.
- W2997843383 hasRelatedWork W2994714051 @default.
- W2997843383 hasRelatedWork W3002689610 @default.
- W2997843383 hasRelatedWork W3046584790 @default.
- W2997843383 hasRelatedWork W3116411895 @default.
- W2997843383 hasRelatedWork W3165330776 @default.
- W2997843383 hasRelatedWork W3183390056 @default.
- W2997843383 hasRelatedWork W3198968311 @default.
- W2997843383 hasRelatedWork W3203385303 @default.
- W2997843383 isParatext "false" @default.
- W2997843383 isRetracted "false" @default.
- W2997843383 magId "2997843383" @default.
- W2997843383 workType "book" @default.