Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997870252> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W2997870252 abstract "The co-location pattern is a subset of spatial features that are frequently located together in spatial proximity. However, the traditional approaches only focus on the prevalence of patterns, and it cannot reflect the influence of patterns. In this paper, we are committed to address the problem of mining high influence co-location patterns. At first, we define the concepts of influence features and reference features. Based on these concepts, a series of definitions are introduced further to describe the influence co-location pattern. Secondly, a metric is designed to measure the influence degree of the influence co-location pattern, and a basic algorithm for mining high influence co-location patterns is presented. Then, according to the properties of the influence co-location pattern, the corresponding pruning strategy is proposed to improve the efficiency of the algorithm. At last, we conduct extensive experiments on synthetic and real data sets to test our approaches. Experimental results show that our approaches are effective and efficient to discover high influence co-location patterns." @default.
- W2997870252 created "2020-01-10" @default.
- W2997870252 creator A5033925502 @default.
- W2997870252 creator A5034357412 @default.
- W2997870252 creator A5044385591 @default.
- W2997870252 creator A5071969820 @default.
- W2997870252 date "2019-11-01" @default.
- W2997870252 modified "2023-09-27" @default.
- W2997870252 title "Discovering High Influence Co-location Patterns from Spatial Data Sets" @default.
- W2997870252 cites W1515526911 @default.
- W2997870252 cites W1737158080 @default.
- W2997870252 cites W1964570589 @default.
- W2997870252 cites W1973749534 @default.
- W2997870252 cites W2059054797 @default.
- W2997870252 cites W2100595739 @default.
- W2997870252 cites W2107990165 @default.
- W2997870252 cites W2121095871 @default.
- W2997870252 cites W2136171062 @default.
- W2997870252 cites W2248228299 @default.
- W2997870252 cites W2761386529 @default.
- W2997870252 doi "https://doi.org/10.1109/icbk.2019.00026" @default.
- W2997870252 hasPublicationYear "2019" @default.
- W2997870252 type Work @default.
- W2997870252 sameAs 2997870252 @default.
- W2997870252 citedByCount "1" @default.
- W2997870252 countsByYear W29978702522022 @default.
- W2997870252 crossrefType "proceedings-article" @default.
- W2997870252 hasAuthorship W2997870252A5033925502 @default.
- W2997870252 hasAuthorship W2997870252A5034357412 @default.
- W2997870252 hasAuthorship W2997870252A5044385591 @default.
- W2997870252 hasAuthorship W2997870252A5071969820 @default.
- W2997870252 hasConcept C124101348 @default.
- W2997870252 hasConcept C41008148 @default.
- W2997870252 hasConceptScore W2997870252C124101348 @default.
- W2997870252 hasConceptScore W2997870252C41008148 @default.
- W2997870252 hasLocation W29978702521 @default.
- W2997870252 hasOpenAccess W2997870252 @default.
- W2997870252 hasPrimaryLocation W29978702521 @default.
- W2997870252 hasRelatedWork W2347219288 @default.
- W2997870252 hasRelatedWork W2348097614 @default.
- W2997870252 hasRelatedWork W2354822586 @default.
- W2997870252 hasRelatedWork W2358668433 @default.
- W2997870252 hasRelatedWork W2358841807 @default.
- W2997870252 hasRelatedWork W2366221835 @default.
- W2997870252 hasRelatedWork W2390279801 @default.
- W2997870252 hasRelatedWork W2748952813 @default.
- W2997870252 hasRelatedWork W2899084033 @default.
- W2997870252 hasRelatedWork W3149424243 @default.
- W2997870252 isParatext "false" @default.
- W2997870252 isRetracted "false" @default.
- W2997870252 magId "2997870252" @default.
- W2997870252 workType "article" @default.