Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997873617> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2997873617 endingPage "986" @default.
- W2997873617 startingPage "974" @default.
- W2997873617 abstract "In recent times, accurate and early diagnosis of Alzheimer's disease (AD) plays a vital role in patient care and further treatment. Predicting AD from mild cognitive impairment (MCI) and cognitive normal (CN) has become popular. Neuroimaging and computer-aided diagnosis techniques are used for classification of AD by physicians in the early stage. Most of the previous machine learning techniques work on handpicked features. In the recent days, deep learning has been applied for many medical image applications. Existing deep learning systems work on raw magnetic resonance imaging (MRI) images and cortical surface as an input to the convolution neural network (CNN) to perform classification of AD. AD affects the brain volume and changes the gray matter texture. In our work, we used 1820 T2-weighted brain magnetic resonance volumes including 635 AD MRIs, 548 MCI MRIs, and 637 CN MRIs, sliced into 18,017 voxels. We proposed an approach to extract the gray matter from brain voxels and perform the classification using the CNN. A Gaussian filter is used to enhance the voxels, and skull stripping algorithm is used to remove the irrelevant tissues from enhanced voxels. Then, those voxels are segmented by hybrid enhanced independent component analysis. Segmented gray matter is used as an input to the CNN. We performed clinical valuation using our proposed approach and achieved 90.47% accuracy, 86.66% of recall, and 92.59% precision." @default.
- W2997873617 created "2020-01-10" @default.
- W2997873617 creator A5012193584 @default.
- W2997873617 creator A5055719841 @default.
- W2997873617 date "2019-01-01" @default.
- W2997873617 modified "2023-10-14" @default.
- W2997873617 title "Convolution neural network–based Alzheimer's disease classification using hybrid enhanced independent component analysis based segmented gray matter of T2 weighted magnetic resonance imaging with clinical valuation" @default.
- W2997873617 cites W1948745668 @default.
- W2997873617 cites W1979062697 @default.
- W2997873617 cites W2014418634 @default.
- W2997873617 cites W2027829736 @default.
- W2997873617 cites W2028580299 @default.
- W2997873617 cites W2095647323 @default.
- W2997873617 cites W2126598020 @default.
- W2997873617 cites W2136442218 @default.
- W2997873617 cites W2160227143 @default.
- W2997873617 cites W2171831801 @default.
- W2997873617 cites W2210799912 @default.
- W2997873617 cites W2238108400 @default.
- W2997873617 cites W2283557089 @default.
- W2997873617 cites W2312861095 @default.
- W2997873617 cites W2533800772 @default.
- W2997873617 cites W2590116164 @default.
- W2997873617 cites W2620000709 @default.
- W2997873617 cites W2626513856 @default.
- W2997873617 cites W2758123802 @default.
- W2997873617 cites W2789337348 @default.
- W2997873617 cites W2889682853 @default.
- W2997873617 cites W2896115045 @default.
- W2997873617 cites W2905035821 @default.
- W2997873617 cites W2907148404 @default.
- W2997873617 cites W2914307117 @default.
- W2997873617 cites W2931768583 @default.
- W2997873617 cites W2945065837 @default.
- W2997873617 cites W4238688872 @default.
- W2997873617 doi "https://doi.org/10.1016/j.trci.2019.10.001" @default.
- W2997873617 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6944731" @default.
- W2997873617 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31921971" @default.
- W2997873617 hasPublicationYear "2019" @default.
- W2997873617 type Work @default.
- W2997873617 sameAs 2997873617 @default.
- W2997873617 citedByCount "46" @default.
- W2997873617 countsByYear W29978736172020 @default.
- W2997873617 countsByYear W29978736172021 @default.
- W2997873617 countsByYear W29978736172022 @default.
- W2997873617 countsByYear W29978736172023 @default.
- W2997873617 crossrefType "journal-article" @default.
- W2997873617 hasAuthorship W2997873617A5012193584 @default.
- W2997873617 hasAuthorship W2997873617A5055719841 @default.
- W2997873617 hasBestOaLocation W29978736171 @default.
- W2997873617 hasConcept C108583219 @default.
- W2997873617 hasConcept C126838900 @default.
- W2997873617 hasConcept C143409427 @default.
- W2997873617 hasConcept C153180895 @default.
- W2997873617 hasConcept C154945302 @default.
- W2997873617 hasConcept C15744967 @default.
- W2997873617 hasConcept C169760540 @default.
- W2997873617 hasConcept C41008148 @default.
- W2997873617 hasConcept C54170458 @default.
- W2997873617 hasConcept C58693492 @default.
- W2997873617 hasConcept C71924100 @default.
- W2997873617 hasConcept C81363708 @default.
- W2997873617 hasConceptScore W2997873617C108583219 @default.
- W2997873617 hasConceptScore W2997873617C126838900 @default.
- W2997873617 hasConceptScore W2997873617C143409427 @default.
- W2997873617 hasConceptScore W2997873617C153180895 @default.
- W2997873617 hasConceptScore W2997873617C154945302 @default.
- W2997873617 hasConceptScore W2997873617C15744967 @default.
- W2997873617 hasConceptScore W2997873617C169760540 @default.
- W2997873617 hasConceptScore W2997873617C41008148 @default.
- W2997873617 hasConceptScore W2997873617C54170458 @default.
- W2997873617 hasConceptScore W2997873617C58693492 @default.
- W2997873617 hasConceptScore W2997873617C71924100 @default.
- W2997873617 hasConceptScore W2997873617C81363708 @default.
- W2997873617 hasIssue "1" @default.
- W2997873617 hasLocation W29978736171 @default.
- W2997873617 hasLocation W29978736172 @default.
- W2997873617 hasLocation W29978736173 @default.
- W2997873617 hasLocation W29978736174 @default.
- W2997873617 hasOpenAccess W2997873617 @default.
- W2997873617 hasPrimaryLocation W29978736171 @default.
- W2997873617 hasRelatedWork W2731899572 @default.
- W2997873617 hasRelatedWork W2732542196 @default.
- W2997873617 hasRelatedWork W2738221750 @default.
- W2997873617 hasRelatedWork W3116150086 @default.
- W2997873617 hasRelatedWork W3133861977 @default.
- W2997873617 hasRelatedWork W3156786002 @default.
- W2997873617 hasRelatedWork W3186111093 @default.
- W2997873617 hasRelatedWork W4200173597 @default.
- W2997873617 hasRelatedWork W4214561993 @default.
- W2997873617 hasRelatedWork W564581980 @default.
- W2997873617 hasVolume "5" @default.
- W2997873617 isParatext "false" @default.
- W2997873617 isRetracted "false" @default.
- W2997873617 magId "2997873617" @default.
- W2997873617 workType "article" @default.