Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997896449> ?p ?o ?g. }
- W2997896449 endingPage "2888" @default.
- W2997896449 startingPage "2873" @default.
- W2997896449 abstract "This paper proposes a novel method called Jointly Sparse Locality Regression (JSLR) for feature extraction and selection. JSLR utilizes joint $L_{2,1}$ -norm minimization on regularization term, and also introduces the locality to characterize the local geometric structure of the data. There are three main contributions in JSLR for face recognition. Firstly, it eliminates the drawback in ridge regression and Linear Discriminant Analysis (LDA) that when the number of the classes is too small, not enough projections can be obtained for feature extraction. Secondly, by using the local geometric structure as the regularization term, JSLR is able to preserve local information and find an embedding subspace which can detect the most essential data manifold structure. Moreover, since the $L_{2,1}$ -norm based loss function is robust to outliers in data points, JSLR provides the joint sparsity for robust feature selection. The theoretical connections of the proposed method and the previous regression methods are explored and the convergence of the proposed algorithm is also proved. Experimental evaluation on several well-known data sets shows the merits of the proposed method on feature selection and classification." @default.
- W2997896449 created "2020-01-10" @default.
- W2997896449 creator A5026796400 @default.
- W2997896449 creator A5043352718 @default.
- W2997896449 creator A5069692042 @default.
- W2997896449 creator A5073006299 @default.
- W2997896449 date "2020-11-01" @default.
- W2997896449 modified "2023-10-14" @default.
- W2997896449 title "Jointly Sparse Locality Regression for Image Feature Extraction" @default.
- W2997896449 cites W1136224152 @default.
- W2997896449 cites W1453614571 @default.
- W2997896449 cites W1600550542 @default.
- W2997896449 cites W1644402181 @default.
- W2997896449 cites W1761723896 @default.
- W2997896449 cites W1904056154 @default.
- W2997896449 cites W1951319388 @default.
- W2997896449 cites W1966759576 @default.
- W2997896449 cites W1970672441 @default.
- W2997896449 cites W1975900269 @default.
- W2997896449 cites W1976114481 @default.
- W2997896449 cites W1976503215 @default.
- W2997896449 cites W1981020133 @default.
- W2997896449 cites W2005292390 @default.
- W2997896449 cites W2013496844 @default.
- W2997896449 cites W2027717478 @default.
- W2997896449 cites W2029348341 @default.
- W2997896449 cites W2033419168 @default.
- W2997896449 cites W2041259983 @default.
- W2997896449 cites W2043080228 @default.
- W2997896449 cites W2043661478 @default.
- W2997896449 cites W2047825359 @default.
- W2997896449 cites W2063715296 @default.
- W2997896449 cites W2073025445 @default.
- W2997896449 cites W2076363162 @default.
- W2997896449 cites W2078093994 @default.
- W2997896449 cites W2083162467 @default.
- W2997896449 cites W2084716923 @default.
- W2997896449 cites W2088100205 @default.
- W2997896449 cites W2100286988 @default.
- W2997896449 cites W2102460275 @default.
- W2997896449 cites W2113600901 @default.
- W2997896449 cites W2117553576 @default.
- W2997896449 cites W2119862467 @default.
- W2997896449 cites W2121647436 @default.
- W2997896449 cites W2122322115 @default.
- W2997896449 cites W2122825543 @default.
- W2997896449 cites W2127615881 @default.
- W2997896449 cites W2152374199 @default.
- W2997896449 cites W2154672679 @default.
- W2997896449 cites W2155893237 @default.
- W2997896449 cites W2156642959 @default.
- W2997896449 cites W2163693992 @default.
- W2997896449 cites W2163939328 @default.
- W2997896449 cites W2168901348 @default.
- W2997896449 cites W2205061450 @default.
- W2997896449 cites W2261658981 @default.
- W2997896449 cites W2343962831 @default.
- W2997896449 cites W2471758726 @default.
- W2997896449 cites W2588939073 @default.
- W2997896449 cites W2741754853 @default.
- W2997896449 cites W2790640759 @default.
- W2997896449 cites W2791251452 @default.
- W2997896449 cites W2883007096 @default.
- W2997896449 cites W2904251885 @default.
- W2997896449 cites W3100830527 @default.
- W2997896449 cites W827142139 @default.
- W2997896449 doi "https://doi.org/10.1109/tmm.2019.2961508" @default.
- W2997896449 hasPublicationYear "2020" @default.
- W2997896449 type Work @default.
- W2997896449 sameAs 2997896449 @default.
- W2997896449 citedByCount "3" @default.
- W2997896449 countsByYear W29978964492022 @default.
- W2997896449 countsByYear W29978964492023 @default.
- W2997896449 crossrefType "journal-article" @default.
- W2997896449 hasAuthorship W2997896449A5026796400 @default.
- W2997896449 hasAuthorship W2997896449A5043352718 @default.
- W2997896449 hasAuthorship W2997896449A5069692042 @default.
- W2997896449 hasAuthorship W2997896449A5073006299 @default.
- W2997896449 hasConcept C105795698 @default.
- W2997896449 hasConcept C115961682 @default.
- W2997896449 hasConcept C121332964 @default.
- W2997896449 hasConcept C124066611 @default.
- W2997896449 hasConcept C138885662 @default.
- W2997896449 hasConcept C153180895 @default.
- W2997896449 hasConcept C154945302 @default.
- W2997896449 hasConcept C163716315 @default.
- W2997896449 hasConcept C2776401178 @default.
- W2997896449 hasConcept C2779808786 @default.
- W2997896449 hasConcept C33923547 @default.
- W2997896449 hasConcept C41008148 @default.
- W2997896449 hasConcept C41895202 @default.
- W2997896449 hasConcept C52622490 @default.
- W2997896449 hasConcept C56372850 @default.
- W2997896449 hasConcept C62520636 @default.
- W2997896449 hasConcept C83546350 @default.
- W2997896449 hasConceptScore W2997896449C105795698 @default.
- W2997896449 hasConceptScore W2997896449C115961682 @default.
- W2997896449 hasConceptScore W2997896449C121332964 @default.