Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997940326> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2997940326 endingPage "8782" @default.
- W2997940326 startingPage "8768" @default.
- W2997940326 abstract "As the problem of an aging population becomes more and more serious, social robots have an increasingly significant influence on human life. By employing regular question-and-answer conversations or wearable devices, some social robotics products can establish personal health archives. But those robots are unable to collect diet information automatically through robot vision or audition. A healthy diet can reduce a person's risk of developing cancer, diabetes, heart disease, and other age-related diseases. In order to automatically perceive the dietary composition of the elderly by listening to people's chatting, this paper proposed a chat-based automatic dietary composition perception algorithm (DCPA). DCPA uses social robot audition to understand the semantic information and percept dietary composition for Mandarin Chinese. Firstly, based on the Mel-frequency cepstrum coefficient and convolutional neural network, a speaker recognition method is designed to identify speech data. Based on speech segmentation and speaker recognition algorithm, an audio segment classification method is proposed to distinguish different speakers, store their identity information and the sequence of expression in a speech conversation. Secondly, a dietetic lexicon is established, and two kinds of dietary composition semantic understanding algorithms are proposed to understand the eating semantics and sensor dietary composition information. To evaluate the performance of the proposed DCPA algorithm, we implemented the proposed DCPA in our social robot platform. Then we established two categories of test datasets relating to a one-person and a multi-person chat. The test results show that DCPA is capable of understanding users' dietary compositions, with an F1 score of 0.9505, 0.8940 and 0.8768 for one-person talking, a two-person chat and a three-person chat, respectively. DCPA has good robustness for obtaining dietary information." @default.
- W2997940326 created "2020-01-10" @default.
- W2997940326 creator A5025790251 @default.
- W2997940326 creator A5041145341 @default.
- W2997940326 creator A5065684808 @default.
- W2997940326 date "2020-01-01" @default.
- W2997940326 modified "2023-10-18" @default.
- W2997940326 title "Dietary Composition Perception Algorithm Using Social Robot Audition for Mandarin Chinese" @default.
- W2997940326 cites W17563211 @default.
- W2997940326 cites W1872023060 @default.
- W2997940326 cites W1893742867 @default.
- W2997940326 cites W2004902747 @default.
- W2997940326 cites W2023384780 @default.
- W2997940326 cites W2052384514 @default.
- W2997940326 cites W2054282473 @default.
- W2997940326 cites W2060723928 @default.
- W2997940326 cites W2096446497 @default.
- W2997940326 cites W2115867364 @default.
- W2997940326 cites W2138605095 @default.
- W2997940326 cites W2189635060 @default.
- W2997940326 cites W2348221703 @default.
- W2997940326 cites W2368429174 @default.
- W2997940326 cites W2473329891 @default.
- W2997940326 cites W2588251211 @default.
- W2997940326 cites W2611295311 @default.
- W2997940326 cites W2623759943 @default.
- W2997940326 cites W2734627336 @default.
- W2997940326 cites W2778807988 @default.
- W2997940326 cites W2788031678 @default.
- W2997940326 cites W2802615216 @default.
- W2997940326 cites W2807418021 @default.
- W2997940326 cites W2890265591 @default.
- W2997940326 cites W2894120184 @default.
- W2997940326 cites W2910088833 @default.
- W2997940326 cites W2963242190 @default.
- W2997940326 cites W337580137 @default.
- W2997940326 doi "https://doi.org/10.1109/access.2019.2963560" @default.
- W2997940326 hasPublicationYear "2020" @default.
- W2997940326 type Work @default.
- W2997940326 sameAs 2997940326 @default.
- W2997940326 citedByCount "56" @default.
- W2997940326 countsByYear W29979403262020 @default.
- W2997940326 countsByYear W29979403262021 @default.
- W2997940326 countsByYear W29979403262022 @default.
- W2997940326 countsByYear W29979403262023 @default.
- W2997940326 crossrefType "journal-article" @default.
- W2997940326 hasAuthorship W2997940326A5025790251 @default.
- W2997940326 hasAuthorship W2997940326A5041145341 @default.
- W2997940326 hasAuthorship W2997940326A5065684808 @default.
- W2997940326 hasBestOaLocation W29979403261 @default.
- W2997940326 hasConcept C154945302 @default.
- W2997940326 hasConcept C15744967 @default.
- W2997940326 hasConcept C162947575 @default.
- W2997940326 hasConcept C184337299 @default.
- W2997940326 hasConcept C199360897 @default.
- W2997940326 hasConcept C19966478 @default.
- W2997940326 hasConcept C2777200299 @default.
- W2997940326 hasConcept C28490314 @default.
- W2997940326 hasConcept C41008148 @default.
- W2997940326 hasConcept C46312422 @default.
- W2997940326 hasConcept C65401140 @default.
- W2997940326 hasConcept C81363708 @default.
- W2997940326 hasConcept C90509273 @default.
- W2997940326 hasConceptScore W2997940326C154945302 @default.
- W2997940326 hasConceptScore W2997940326C15744967 @default.
- W2997940326 hasConceptScore W2997940326C162947575 @default.
- W2997940326 hasConceptScore W2997940326C184337299 @default.
- W2997940326 hasConceptScore W2997940326C199360897 @default.
- W2997940326 hasConceptScore W2997940326C19966478 @default.
- W2997940326 hasConceptScore W2997940326C2777200299 @default.
- W2997940326 hasConceptScore W2997940326C28490314 @default.
- W2997940326 hasConceptScore W2997940326C41008148 @default.
- W2997940326 hasConceptScore W2997940326C46312422 @default.
- W2997940326 hasConceptScore W2997940326C65401140 @default.
- W2997940326 hasConceptScore W2997940326C81363708 @default.
- W2997940326 hasConceptScore W2997940326C90509273 @default.
- W2997940326 hasFunder F4320321001 @default.
- W2997940326 hasFunder F4320322272 @default.
- W2997940326 hasLocation W29979403261 @default.
- W2997940326 hasLocation W29979403262 @default.
- W2997940326 hasOpenAccess W2997940326 @default.
- W2997940326 hasPrimaryLocation W29979403261 @default.
- W2997940326 hasRelatedWork W2044123854 @default.
- W2997940326 hasRelatedWork W236330370 @default.
- W2997940326 hasRelatedWork W2526529698 @default.
- W2997940326 hasRelatedWork W2584169100 @default.
- W2997940326 hasRelatedWork W2896688293 @default.
- W2997940326 hasRelatedWork W2929126215 @default.
- W2997940326 hasRelatedWork W2975414340 @default.
- W2997940326 hasRelatedWork W3212484373 @default.
- W2997940326 hasRelatedWork W4238590762 @default.
- W2997940326 hasRelatedWork W2255575970 @default.
- W2997940326 hasVolume "8" @default.
- W2997940326 isParatext "false" @default.
- W2997940326 isRetracted "false" @default.
- W2997940326 magId "2997940326" @default.
- W2997940326 workType "article" @default.