Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997958396> ?p ?o ?g. }
- W2997958396 endingPage "47" @default.
- W2997958396 startingPage "33" @default.
- W2997958396 abstract "Behaviour prediction function of an autonomous vehicle predicts the future states of the nearby vehicles based on the current and past observations of the surrounding environment. This helps enhance their awareness of the imminent hazards. However, conventional behaviour prediction solutions are applicable in simple driving scenarios that require short prediction horizons. Most recently, deep learning-based approaches have become popular due to their superior performance in more complex environments compared to the conventional approaches. Motivated by this increased popularity, we provide a comprehensive review of the state-of-the-art of deep learning-based approaches for vehicle behaviour prediction in this paper. We firstly give an overview of the generic problem of vehicle behaviour prediction and discuss its challenges, followed by classification and review of the most recent deep learning-based solutions based on three criteria: input representation, output type, and prediction method. The paper also discusses the performance of several well-known solutions, identifies the research gaps in the literature and outlines potential new research directions." @default.
- W2997958396 created "2020-01-10" @default.
- W2997958396 creator A5041389699 @default.
- W2997958396 creator A5047057664 @default.
- W2997958396 creator A5068530392 @default.
- W2997958396 creator A5076549005 @default.
- W2997958396 creator A5082424624 @default.
- W2997958396 date "2022-01-01" @default.
- W2997958396 modified "2023-10-17" @default.
- W2997958396 title "Deep Learning-Based Vehicle Behavior Prediction for Autonomous Driving Applications: A Review" @default.
- W2997958396 cites W1501856433 @default.
- W2997958396 cites W1745334888 @default.
- W2997958396 cites W1901129140 @default.
- W2997958396 cites W2022508996 @default.
- W2997958396 cites W2034797247 @default.
- W2997958396 cites W2058570191 @default.
- W2997958396 cites W2064675550 @default.
- W2997958396 cites W2071680411 @default.
- W2997958396 cites W2084246939 @default.
- W2997958396 cites W2097545165 @default.
- W2997958396 cites W2116341502 @default.
- W2997958396 cites W2157331557 @default.
- W2997958396 cites W2167052694 @default.
- W2997958396 cites W2168292091 @default.
- W2997958396 cites W2424778531 @default.
- W2997958396 cites W2516923985 @default.
- W2997958396 cites W2593239008 @default.
- W2997958396 cites W2607296803 @default.
- W2997958396 cites W2741066535 @default.
- W2997958396 cites W2741087535 @default.
- W2997958396 cites W2766836212 @default.
- W2997958396 cites W2789714787 @default.
- W2997958396 cites W2791814097 @default.
- W2997958396 cites W2792239816 @default.
- W2997958396 cites W2807452521 @default.
- W2997958396 cites W2894978157 @default.
- W2997958396 cites W2896093746 @default.
- W2997958396 cites W2905301806 @default.
- W2997958396 cites W2911486422 @default.
- W2997958396 cites W2932960505 @default.
- W2997958396 cites W2940129212 @default.
- W2997958396 cites W2963001155 @default.
- W2997958396 cites W2963163009 @default.
- W2997958396 cites W2963309363 @default.
- W2997958396 cites W2963343478 @default.
- W2997958396 cites W2963440325 @default.
- W2997958396 cites W2963489164 @default.
- W2997958396 cites W2963548793 @default.
- W2997958396 cites W2963906196 @default.
- W2997958396 cites W2963914175 @default.
- W2997958396 cites W2963945905 @default.
- W2997958396 cites W2964203186 @default.
- W2997958396 cites W2967078791 @default.
- W2997958396 cites W2967177252 @default.
- W2997958396 cites W2968337686 @default.
- W2997958396 cites W2969040309 @default.
- W2997958396 cites W2971323980 @default.
- W2997958396 cites W2989851631 @default.
- W2997958396 cites W3010072020 @default.
- W2997958396 cites W3105115779 @default.
- W2997958396 cites W3106257603 @default.
- W2997958396 cites W3114753236 @default.
- W2997958396 doi "https://doi.org/10.1109/tits.2020.3012034" @default.
- W2997958396 hasPublicationYear "2022" @default.
- W2997958396 type Work @default.
- W2997958396 sameAs 2997958396 @default.
- W2997958396 citedByCount "184" @default.
- W2997958396 countsByYear W29979583962020 @default.
- W2997958396 countsByYear W29979583962021 @default.
- W2997958396 countsByYear W29979583962022 @default.
- W2997958396 countsByYear W29979583962023 @default.
- W2997958396 crossrefType "journal-article" @default.
- W2997958396 hasAuthorship W2997958396A5041389699 @default.
- W2997958396 hasAuthorship W2997958396A5047057664 @default.
- W2997958396 hasAuthorship W2997958396A5068530392 @default.
- W2997958396 hasAuthorship W2997958396A5076549005 @default.
- W2997958396 hasAuthorship W2997958396A5082424624 @default.
- W2997958396 hasBestOaLocation W29979583962 @default.
- W2997958396 hasConcept C108583219 @default.
- W2997958396 hasConcept C111472728 @default.
- W2997958396 hasConcept C119857082 @default.
- W2997958396 hasConcept C127413603 @default.
- W2997958396 hasConcept C138885662 @default.
- W2997958396 hasConcept C14036430 @default.
- W2997958396 hasConcept C154945302 @default.
- W2997958396 hasConcept C15744967 @default.
- W2997958396 hasConcept C17744445 @default.
- W2997958396 hasConcept C199539241 @default.
- W2997958396 hasConcept C2776359362 @default.
- W2997958396 hasConcept C2780586882 @default.
- W2997958396 hasConcept C2780586970 @default.
- W2997958396 hasConcept C41008148 @default.
- W2997958396 hasConcept C77805123 @default.
- W2997958396 hasConcept C78458016 @default.
- W2997958396 hasConcept C86803240 @default.
- W2997958396 hasConcept C94625758 @default.
- W2997958396 hasConceptScore W2997958396C108583219 @default.
- W2997958396 hasConceptScore W2997958396C111472728 @default.