Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997966807> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W2997966807 abstract "Imbalanced datasets occur in real-world scenarios and affect the performance of the classifiers in supervised learning. To combat the imbalance between majority and minority instances, several techniques including SMOTE which generates artificial data along the line between minority samples and its selected neighbors are used in preprocessing. However, SMOTE suffers from generating synthetic data in noise regions and imbalanced distribution of samples within the minority class. Using clustering techniques prior to the oversampling step to determine the target areas of the input space where the generation of synthetic samples is effective, is known to be an extension of SMOTE. The proposed method uses affinity propagation as a clustering technique to generate clusters and its cluster exemplar without requiring the specification of the number of clusters a priori. The cluster exemplar becomes the basis of which samples are to be oversampled in each cluster. Simulation results on some publicly available datasets show the effectiveness of the proposed method in terms of F-measure, G-mean and AUC with a mean value across datasets of .685, .756 and .765 respectively." @default.
- W2997966807 created "2020-01-10" @default.
- W2997966807 creator A5002016340 @default.
- W2997966807 creator A5032332379 @default.
- W2997966807 creator A5052741392 @default.
- W2997966807 date "2019-10-18" @default.
- W2997966807 modified "2023-09-27" @default.
- W2997966807 title "Handling Imbalanced Data through Affinity Propagation and SMOTE" @default.
- W2997966807 cites W123443654 @default.
- W2997966807 cites W1496056137 @default.
- W2997966807 cites W2096574974 @default.
- W2997966807 cites W2115969689 @default.
- W2997966807 cites W2165232124 @default.
- W2997966807 cites W2287979797 @default.
- W2997966807 cites W2601726217 @default.
- W2997966807 cites W2744139632 @default.
- W2997966807 cites W2766296277 @default.
- W2997966807 cites W2784249848 @default.
- W2997966807 cites W2891857749 @default.
- W2997966807 doi "https://doi.org/10.1145/3366650.3366665" @default.
- W2997966807 hasPublicationYear "2019" @default.
- W2997966807 type Work @default.
- W2997966807 sameAs 2997966807 @default.
- W2997966807 citedByCount "0" @default.
- W2997966807 crossrefType "proceedings-article" @default.
- W2997966807 hasAuthorship W2997966807A5002016340 @default.
- W2997966807 hasAuthorship W2997966807A5032332379 @default.
- W2997966807 hasAuthorship W2997966807A5052741392 @default.
- W2997966807 hasConcept C124101348 @default.
- W2997966807 hasConcept C154945302 @default.
- W2997966807 hasConcept C41008148 @default.
- W2997966807 hasConceptScore W2997966807C124101348 @default.
- W2997966807 hasConceptScore W2997966807C154945302 @default.
- W2997966807 hasConceptScore W2997966807C41008148 @default.
- W2997966807 hasLocation W29979668071 @default.
- W2997966807 hasOpenAccess W2997966807 @default.
- W2997966807 hasPrimaryLocation W29979668071 @default.
- W2997966807 hasRelatedWork W2347219288 @default.
- W2997966807 hasRelatedWork W2348097614 @default.
- W2997966807 hasRelatedWork W2354822586 @default.
- W2997966807 hasRelatedWork W2358841807 @default.
- W2997966807 hasRelatedWork W2366221835 @default.
- W2997966807 hasRelatedWork W2748952813 @default.
- W2997966807 hasRelatedWork W2899084033 @default.
- W2997966807 hasRelatedWork W2969723784 @default.
- W2997966807 hasRelatedWork W3107474891 @default.
- W2997966807 hasRelatedWork W3149424243 @default.
- W2997966807 isParatext "false" @default.
- W2997966807 isRetracted "false" @default.
- W2997966807 magId "2997966807" @default.
- W2997966807 workType "article" @default.