Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997968314> ?p ?o ?g. }
- W2997968314 endingPage "158" @default.
- W2997968314 startingPage "158" @default.
- W2997968314 abstract "Timely and accurate crop type mapping is a critical prerequisite for the estimation of water availability and environmental carrying capacity. This research proposed a method to integrate time series Sentinel-1 (S1) and Sentinel-2 (S2) data for crop type mapping over oasis agricultural areas through a case study in Northwest China. Previous studies using synthetic aperture radar (SAR) data alone often yield quite limited accuracy in crop type identification due to speckles. To improve the quality of SAR features, we adopted a statistically homogeneous pixel (SHP) distributed scatterer interferometry (DSI) algorithm, originally proposed in the interferometric SAR (InSAR) community for distributed scatters (DSs) extraction, to identify statistically homogeneous pixel subsets (SHPs). On the basis of this algorithm, the SAR backscatter intensity was de-speckled, and the bias of coherence was mitigated. In addition to backscatter intensity, several InSAR products were extracted for crop type classification, including the interferometric coherence, master versus slave intensity ratio, and amplitude dispersion derived from SAR data. To explore the role of red-edge wavelengths in oasis crop type discrimination, we derived 11 red-edge indices and three red-edge bands from Sentinel-2 images, together with the conventional optical features, to serve as input features for classification. To deal with the high dimension of combined SAR and optical features, an automated feature selection method, i.e., recursive feature increment, was developed to obtain the optimal combination of S1 and S2 features to achieve the highest mapping accuracy. Using a random forest classifier, a distribution map of five major crop types was produced with an overall accuracy of 83.22% and kappa coefficient of 0.77. The contribution of SAR and optical features were investigated. SAR intensity in VH polarization was proved to be most important for crop type identification among all the microwave and optical features employed in this study. Some of the InSAR products, i.e., the amplitude dispersion, master versus slave intensity ratio, and coherence, were found to be beneficial for oasis crop type mapping. It was proved the inclusion of red-edge wavelengths improved the overall accuracy (OA) of crop type mapping by 1.84% compared with only using conventional optical features. In comparison, it was demonstrated that the synergistic use of time series Sentinel-1 and Sentinel-2 data achieved the best performance in the oasis crop type discrimination." @default.
- W2997968314 created "2020-01-10" @default.
- W2997968314 creator A5032597919 @default.
- W2997968314 creator A5033542967 @default.
- W2997968314 creator A5047760593 @default.
- W2997968314 creator A5075273130 @default.
- W2997968314 creator A5088044243 @default.
- W2997968314 date "2020-01-02" @default.
- W2997968314 modified "2023-10-17" @default.
- W2997968314 title "Integration of Time Series Sentinel-1 and Sentinel-2 Imagery for Crop Type Mapping over Oasis Agricultural Areas" @default.
- W2997968314 cites W1559703043 @default.
- W2997968314 cites W1565635109 @default.
- W2997968314 cites W1964423293 @default.
- W2997968314 cites W1985555755 @default.
- W2997968314 cites W1991861340 @default.
- W2997968314 cites W1994490949 @default.
- W2997968314 cites W2030165874 @default.
- W2997968314 cites W2037206507 @default.
- W2997968314 cites W2052700773 @default.
- W2997968314 cites W2055079532 @default.
- W2997968314 cites W2065822370 @default.
- W2997968314 cites W2086823339 @default.
- W2997968314 cites W2095157762 @default.
- W2997968314 cites W2106812384 @default.
- W2997968314 cites W2113895900 @default.
- W2997968314 cites W2116890486 @default.
- W2997968314 cites W2119858996 @default.
- W2997968314 cites W2130762895 @default.
- W2997968314 cites W2143426320 @default.
- W2997968314 cites W2150705511 @default.
- W2997968314 cites W2154506590 @default.
- W2997968314 cites W2159961845 @default.
- W2997968314 cites W2170088503 @default.
- W2997968314 cites W2332981326 @default.
- W2997968314 cites W2399507930 @default.
- W2997968314 cites W2585309444 @default.
- W2997968314 cites W2621021710 @default.
- W2997968314 cites W2767166343 @default.
- W2997968314 cites W2775069442 @default.
- W2997968314 cites W2886775386 @default.
- W2997968314 cites W2895854890 @default.
- W2997968314 cites W2911964244 @default.
- W2997968314 cites W2946413603 @default.
- W2997968314 cites W2953239899 @default.
- W2997968314 doi "https://doi.org/10.3390/rs12010158" @default.
- W2997968314 hasPublicationYear "2020" @default.
- W2997968314 type Work @default.
- W2997968314 sameAs 2997968314 @default.
- W2997968314 citedByCount "22" @default.
- W2997968314 countsByYear W29979683142020 @default.
- W2997968314 countsByYear W29979683142021 @default.
- W2997968314 countsByYear W29979683142022 @default.
- W2997968314 countsByYear W29979683142023 @default.
- W2997968314 crossrefType "journal-article" @default.
- W2997968314 hasAuthorship W2997968314A5032597919 @default.
- W2997968314 hasAuthorship W2997968314A5033542967 @default.
- W2997968314 hasAuthorship W2997968314A5047760593 @default.
- W2997968314 hasAuthorship W2997968314A5075273130 @default.
- W2997968314 hasAuthorship W2997968314A5088044243 @default.
- W2997968314 hasBestOaLocation W29979683141 @default.
- W2997968314 hasConcept C127313418 @default.
- W2997968314 hasConcept C153180895 @default.
- W2997968314 hasConcept C154945302 @default.
- W2997968314 hasConcept C22286887 @default.
- W2997968314 hasConcept C30354325 @default.
- W2997968314 hasConcept C41008148 @default.
- W2997968314 hasConcept C555944384 @default.
- W2997968314 hasConcept C62649853 @default.
- W2997968314 hasConcept C76155785 @default.
- W2997968314 hasConcept C87360688 @default.
- W2997968314 hasConceptScore W2997968314C127313418 @default.
- W2997968314 hasConceptScore W2997968314C153180895 @default.
- W2997968314 hasConceptScore W2997968314C154945302 @default.
- W2997968314 hasConceptScore W2997968314C22286887 @default.
- W2997968314 hasConceptScore W2997968314C30354325 @default.
- W2997968314 hasConceptScore W2997968314C41008148 @default.
- W2997968314 hasConceptScore W2997968314C555944384 @default.
- W2997968314 hasConceptScore W2997968314C62649853 @default.
- W2997968314 hasConceptScore W2997968314C76155785 @default.
- W2997968314 hasConceptScore W2997968314C87360688 @default.
- W2997968314 hasFunder F4320315254 @default.
- W2997968314 hasFunder F4320335777 @default.
- W2997968314 hasIssue "1" @default.
- W2997968314 hasLocation W29979683141 @default.
- W2997968314 hasLocation W29979683142 @default.
- W2997968314 hasOpenAccess W2997968314 @default.
- W2997968314 hasPrimaryLocation W29979683141 @default.
- W2997968314 hasRelatedWork W2148958581 @default.
- W2997968314 hasRelatedWork W2373310320 @default.
- W2997968314 hasRelatedWork W2375969670 @default.
- W2997968314 hasRelatedWork W2382147371 @default.
- W2997968314 hasRelatedWork W2387499565 @default.
- W2997968314 hasRelatedWork W2767118615 @default.
- W2997968314 hasRelatedWork W2790032735 @default.
- W2997968314 hasRelatedWork W2910315605 @default.
- W2997968314 hasRelatedWork W3206958763 @default.
- W2997968314 hasRelatedWork W4252699458 @default.
- W2997968314 hasVolume "12" @default.