Matches in SemOpenAlex for { <https://semopenalex.org/work/W2997998082> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2997998082 abstract "Clustering, the task of grouping together similar items, is a frequently used method for processing data, with numerous applications. Clustering the data generated by sensors in the Internet of Things, for instance, can be useful for monitoring and making control decisions. For example, a cyber physical environment can be monitored by one or more 3D laser-based sensors to detect the objects in that environment and avoid critical situations, e.g. collisions. With the advancements in IoT-based systems, the volume of data produced by, typically high-rate, sensors has become immense. For example, a 3D laser-based sensor with a spinning head can produce hundreds of thousands of points in each second. Clustering such a large volume of data using conventional clustering methods takes too long time, violating the time-sensitivity requirements of applications leveraging the outcome of the clustering. For example, collisions in a cyber physical environment must be prevented as fast as possible. The thesis contributes to efficient clustering methods for distributed and parallel computing architectures, representative of the processing environments in IoT- based systems. To that end, the thesis proposes MAD-C (abbreviating Multi-stage Approximate Distributed Cluster-Combining) and PARMA-CC (abbreviating Parallel Multiphase Approximate Cluster Combining). MAD-C is a method for distributed approximate data clustering. MAD-C employs an approximation-based data synopsis that drastically lowers the required communication bandwidth among the distributed nodes and achieves multiplicative savings in computation time, compared to a baseline that centrally gathers and clusters the data. PARMA-CC is a method for parallel approximate data clustering on multi-cores. Employing approximation-based data synopsis, PARMA-CC achieves scalability on multi-cores by increasing the synergy between the work-sharing procedure and data structures to facilitate highly parallel execution of threads. The thesis provides analytical and empirical evaluation for MAD-C and PARMA-CC." @default.
- W2997998082 created "2020-01-10" @default.
- W2997998082 creator A5053350947 @default.
- W2997998082 date "2019-01-01" @default.
- W2997998082 modified "2023-09-27" @default.
- W2997998082 title "Efficient Approximate Big Data Clustering: Distributed and Parallel Algorithms in the Spectrum of IoT Architectures" @default.
- W2997998082 hasPublicationYear "2019" @default.
- W2997998082 type Work @default.
- W2997998082 sameAs 2997998082 @default.
- W2997998082 citedByCount "0" @default.
- W2997998082 crossrefType "journal-article" @default.
- W2997998082 hasAuthorship W2997998082A5053350947 @default.
- W2997998082 hasConcept C120314980 @default.
- W2997998082 hasConcept C124101348 @default.
- W2997998082 hasConcept C130120984 @default.
- W2997998082 hasConcept C154945302 @default.
- W2997998082 hasConcept C193143536 @default.
- W2997998082 hasConcept C24590314 @default.
- W2997998082 hasConcept C31258907 @default.
- W2997998082 hasConcept C33704608 @default.
- W2997998082 hasConcept C41008148 @default.
- W2997998082 hasConcept C73555534 @default.
- W2997998082 hasConcept C75684735 @default.
- W2997998082 hasConcept C79403827 @default.
- W2997998082 hasConcept C94641424 @default.
- W2997998082 hasConceptScore W2997998082C120314980 @default.
- W2997998082 hasConceptScore W2997998082C124101348 @default.
- W2997998082 hasConceptScore W2997998082C130120984 @default.
- W2997998082 hasConceptScore W2997998082C154945302 @default.
- W2997998082 hasConceptScore W2997998082C193143536 @default.
- W2997998082 hasConceptScore W2997998082C24590314 @default.
- W2997998082 hasConceptScore W2997998082C31258907 @default.
- W2997998082 hasConceptScore W2997998082C33704608 @default.
- W2997998082 hasConceptScore W2997998082C41008148 @default.
- W2997998082 hasConceptScore W2997998082C73555534 @default.
- W2997998082 hasConceptScore W2997998082C75684735 @default.
- W2997998082 hasConceptScore W2997998082C79403827 @default.
- W2997998082 hasConceptScore W2997998082C94641424 @default.
- W2997998082 hasLocation W29979980821 @default.
- W2997998082 hasOpenAccess W2997998082 @default.
- W2997998082 hasPrimaryLocation W29979980821 @default.
- W2997998082 hasRelatedWork W1547566968 @default.
- W2997998082 hasRelatedWork W1678831701 @default.
- W2997998082 hasRelatedWork W1966280034 @default.
- W2997998082 hasRelatedWork W2034968907 @default.
- W2997998082 hasRelatedWork W2056347695 @default.
- W2997998082 hasRelatedWork W2063395455 @default.
- W2997998082 hasRelatedWork W2083220461 @default.
- W2997998082 hasRelatedWork W2131326333 @default.
- W2997998082 hasRelatedWork W2165932491 @default.
- W2997998082 hasRelatedWork W2166505902 @default.
- W2997998082 hasRelatedWork W2202098325 @default.
- W2997998082 hasRelatedWork W2217632786 @default.
- W2997998082 hasRelatedWork W2317463400 @default.
- W2997998082 hasRelatedWork W2381341023 @default.
- W2997998082 hasRelatedWork W2762096197 @default.
- W2997998082 hasRelatedWork W2771678890 @default.
- W2997998082 hasRelatedWork W2895845398 @default.
- W2997998082 hasRelatedWork W2990457403 @default.
- W2997998082 hasRelatedWork W3035145070 @default.
- W2997998082 hasRelatedWork W3174394055 @default.
- W2997998082 isParatext "false" @default.
- W2997998082 isRetracted "false" @default.
- W2997998082 magId "2997998082" @default.
- W2997998082 workType "article" @default.